algebra

functions

fractions

add/sub: find a common denominator multiply: straight across divide: reciprocate bottom, then multiply

exponents

laws of exponents

- $a^{-n}=\frac{1}{a^{n}}$	• $\left(a^{x}\right)^{y}=a^{x y}$
- $a^{x} a^{y}=a^{x+y}$	• $a^{x} b^{x}=(a b)^{x}$
- $\quad \frac{a^{x}}{a^{y}}=a^{x-y}$	• $\frac{a^{x}}{b^{x}}=\left(\frac{a}{b}\right)^{x}$

radicals

- $\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}=x^{m / n}$
- EVEN ROOTS
- $\sqrt[n]{x^{n}}=|x|$
- don't need abs values if power outside root is even ODD ROOTS
- $\sqrt[n]{x^{n}}=x$
intervals \& sets

interval	number line	inequality
(or)	open circle	$<$ or $>$
[or]	closed circle	\leq or \geq

- union (U): combination of both sets intersection (\cap) : overlap between sets
changing form of a function
a function passes the vertical line test
ines
- slope: $m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

factoring

- common factor: something all terms share - special formulas
- $\quad \perp$ slope: $m_{\perp}=-\frac{1}{m}$
- point-slope form: $y-y_{1}=m\left(x-x_{1}\right)$
piecewise functions
$f(x)=\left\{\begin{array}{lc}\text { function } 1, & \text { domain } 1 \\ \text { function } 2, & \text { domain } 2\end{array}\right.$
- graph each function, but erase anything that isn't included in its associated domain
- $\quad x^{2}-y^{2}=(x+y)(x-y)$
- $\quad(x+y)^{2}=x^{2}+2 x y+y^{2}$
- $\quad(x-y)^{2}=x^{2}-2 x y+y^{2}$
- $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
- $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
- standard factoring
- factoring by grouping
- group terms with common factors
- remove greatest common factor from each group
- end up with 2 factors
- long polynomial division
- $\quad r$ is a root $\Leftrightarrow(x-r)$ is a factor
- divide polynomial by known factor
completing the square
changes $a x^{2}+b x+c$ to $a(x-h)^{2}+k$

1. factor out a from all terms
2. look at linear coefficient, divide by 2, square it
3. add and subtract this number
4. identify the perfect square and combine remaining numbers
5. factor a back in

conjugates

- the conjugate of $\sqrt{a} \pm b$ is $\sqrt{a} \mp b$
- multiply the top and bottom of a fraction by its conjugate to simplify

function symmetry

EVEN	ODD
symmetric about origin	symmetric about y-axis
$f(-x)=f(x)$	$f(-x)=-f(x)$

function translation

Vertical Shift

- UP: add a number outside function

DOWN: subtract a number outside function

Horizontal Shift

- RIGHT: subtract a positive number inside function (see a negative)

LEFT: subtract a negative number inside function (see a positive)
Reflections

- x-axis: $-f(x)$

solving equations

linear equations

- move all terms with variable to one side
- factor variable if needed
- isolate variable
other types of equations
- zero factor property
- isolate variable
- cross multiply
- find common denominator
quadratic equations
- make sure quadratic is set equal to 0 first!
- factor, use quadratic formula, or complete the square
system of equations
graphically: where equations intersect algebraically: substitution

1. solve one equation for one variable
2. sub equation 1 into equation 2 to solve for one variable
3. solve for the remaining variable

angles

- $1 / 2$ circle $=180^{\circ}=\pi$ radians
- radians \rightarrow degrees: multiply by $\frac{180}{\pi}$
- degrees \rightarrow radians: multiply by $\frac{\pi}{180}$

unit circle

trig identities

$\cos ^{2} \theta+\sin ^{2} \theta=1$

pre-calc

$\tan \theta$
period $=\pi$
y_{1}

$\csc \theta$

$\sec \theta$
period $=2 \pi$

$\cot \theta$
period $=\pi$
y_{1}

trig functions

input $=$ angle
output = number

$\sin \theta$	$\csc \theta=\frac{1}{\sin \theta}$
$\cos \theta$	$\sec \theta=\frac{1}{\cos \theta}$
$\tan \theta$	$\cot \theta=\frac{1}{\tan \theta}$

trig function symmetry

EVEN functions
ODD functions

- $\cos \theta$
$\sin \theta \quad \bullet \quad \tan \theta$
- $\sec \theta$
$\csc \theta \quad$ • $\cot \theta$

evaluating trig functions

SOHCAHTOA

translating trig functions

Vertical Shift

- UP: add a number outside function

DOWN: subtract a number outside function

Horizontal Shift (phase shift)

- RIGHT: subtract a positive number inside function (see -) LEFT: subtract a negative number inside function (see +) Amplitude (how tall wave is)
- multiplier in front of trig function; $A \sin (\theta)$

Period (how often wave repeats)

- multiplier inside trig functions; $\sin (B \theta)$
- new period: $\frac{\text { original period }}{B}$
computing limits

limits graphically

limits at infinity

$$
\lim _{x \rightarrow \pm \infty} f(x)=L
$$

- $\lim _{x \rightarrow \pm \infty} \frac{1}{x^{n}}=0$
- n is even, $\lim _{x \rightarrow \pm \infty} x^{n}=\infty$
- n is odd, $\lim _{x \rightarrow \infty} x^{n}=\infty, \lim _{x \rightarrow-\infty} x^{n}=-\infty$
computing infinite limits
- look at left and right sided limits
- find what is causing 0 in denominator
- replace with small + or small -
- $\stackrel{ \pm}{+}=\infty, \underset{=}{-}=\infty, \stackrel{+}{=}=-\infty, \overline{+}=-\infty$
vertical asymptotes

1. Find the possible VA by solving denominator $=0$
2. Verify $x=a$ is a VA with at least one infinite limit
computing limits at infinity
3. choose highest power in denominator divide each term by highest power simplify each term
evaluate each term
$x \rightarrow \infty: \sqrt{x^{2}}=|x|=x$ $x \rightarrow-\infty: \sqrt{x^{2}}=|x|=-x$ need negative sign when $x \rightarrow-\infty$ and you have an odd exponent outside radical!
horizontal asymptotes
$y=L$ is a HA if $\lim _{x \rightarrow \infty} f(x)=L$ and/or $\lim _{x \rightarrow-\infty} f(x)=L$
slant asymptotes
degree of numerator $=$ degree of denominator +1 long polynomial division

inverses

function composition
 $f(g(x)): g(x)$ is the inner function and $f(x)$ is the outer function

exponential functions

domain: $(-\infty, \infty)$
laws of exponents

- $a^{x} a^{y}=a^{x+y}$
natural exponential

$$
\begin{aligned}
& f(x)=e^{x} \\
& e \approx 2.7183
\end{aligned}
$$

- $\frac{a^{x}}{a^{y}}=a^{x-y}$
- $\quad\left(a^{x}\right)^{y}=a^{x y}$
- $(a b)^{x}=a^{x} b^{x}$
- $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$
- $a^{x}=a^{y} \Leftrightarrow x=y$

$$
f(x)=b^{x}
$$

$$
b^{\log _{b}(x)}=x
$$

$$
b>1 \text { and } b \neq 1
$$

range: $(0, \infty)$

inverse functions

properties of inverses

- a function has an inverse if it is one-to-one (passes horizontal line test)
$f(x)$ and $f^{-1}(x)$ reflect over the line $y=x$
- $f(x)$ and $f^{-1}(x)$ swap domains and ranges
- $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$

finding an inverse

logarithmic functions

$$
\begin{gathered}
f(x)=\log _{b} x \\
\text { domain: }(0, \infty) \quad \text { range: }(-\infty, \infty)
\end{gathered}
$$

laws of logs

- $\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$
- $\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)$ "What power do
- $\log _{b}\left(x^{r}\right)=r \log _{b}(x)$ need to raise my base
- $\log _{b}(b)=1$ to in order to get x ?"

derivatives

the derivative
 is the slope of the tangent line

continuity \& differentiability

continuity conditions
$\begin{array}{ll}\text { - } & f(a) \text { defined } \\ \text { - } & \lim _{x \rightarrow a} f(x) \text { exists } \\ \text { - } & f(a)=\lim _{x \rightarrow a} f(x)\end{array}$
discontinuities

- removable
- jump
- infinite
- oscillating

Intermediate Value Theorem

If f is continuous on $[a, b]$ and $f(a)<L<f(b)$, then there is a number $c \in(a, b)$ such that $f(c)=L$
differentiability \Rightarrow continuity
continuity \nRightarrow differentiability (i.e. corner or cusp)

differentiability

differentiable = able to find a derivative a function will not be differentiable at a point if there is a ...

- discontinuity
- corner
- cusp
- vertical tangent

derivative graphs

$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$
increasing	above x-axis
decreasing	below x-axis
smooth min/max	crosses x-axis
constant	zero (over interval)
linear	constant (slope of line)
quadratic	linear

derivative applications

physics

- position: $s(t)$
- velocity: $v(t)=s^{\prime}(t)$
- acceleration: $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$

MAX HEIGHT: when $\mathbf{v}(t)=0$; plug time into $s(t)$
VELOCITY ON GROUND: when $s(t)=0$; plug time into $v(t)$
SPEED: speed $=|v(t)|$
SLOWING DOWN: $v(t)$ and $a(t)$ opposite signs
SPPEDING UP: $v(t)$ and $a(t)$ same signs

derivative at a point
 the slope of the tangent line at a single point, $x=a$

$f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$

derivative as a function

the slope of the tangent line anywhere on the original function

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

given $f^{\prime}(x)$, you can find the slope of the tangent line anywhere you'd like by plugging in a value for x

derivative rules

- $\frac{d}{d x}(c)=0$
- $\frac{d}{d x}(c f(x))=c f^{\prime}(x)$
- $\frac{d}{d x}(x)=1$
- $\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)$
- $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
- $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
- product rule: $\frac{d}{d x}(f(x) g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
- quotient rule: $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$
- $\frac{d}{d x}(\sin x)=\cos x$
- $\frac{d}{d x}(\cos x)=-\sin x$
- $\frac{d}{d x}(\tan x)=\sec ^{2} x \quad$ - $\frac{d x}{d x}(\cot x)=-\csc ^{2} x$
- $\frac{d}{d x}(\sec x)=\sec x \tan x$ - $\frac{d}{d x}(\csc x)=-\csc x \cot x$
- chain rule: $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

