MATH 1040: Limits

Finding Limits Graphically

- **NOTATION:** $\lim_{x \to a} f(x) = L$
- Limits tell us what our functions appears to be *approaching* as x closes in around a. (aka: limits don't care about holes!)
- one-sided limits:
 - $\circ \,$ right-sided limits approach a from the right: $\lim_{x \to a^+} f(x) = L$
 - \circ left-sided limits approach *a* from the left: lim f(x) = L
 - If $\lim_{x \to a^+} f(x) = L$ and $\lim_{x \to a^-} f(x) = L$, then $\lim_{x \to a} f(x) = L$
 - If $\lim_{x \to a^+} f(x) = L$ and $\lim_{x \to a^-} f(x) = M$, then $\lim_{x \to a} f(x)$ DNE

Finding Limits Algebraically

• Limit Laws:

 $\circ \lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$ $\circ \lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x)$ $\circ \lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$ $\circ \lim_{x \to a} \left(\frac{f(x)}{g(x)}\right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ (if } \lim_{x \to a} g(x) \neq 0)$ $\circ \lim_{x \to a} (f(x))^n = \left(\lim_{x \to a} f(x)\right)^n$ $\circ \lim_{x \to a} (f(x))^{1/n} = \left(\lim_{x \to a} f(x)\right)^{1/n}$ $\circ \lim_{x \to a} c = c$

• Direct Substitution:

- $\circ~$ always try direct substitution first when calculating a limit!
- \circ plug in *a* into the function. If the result is a number, this is the answer to your limit.

•
$$\lim_{x \to 2} (x^2 - 1) = 2^2 - 1 = 4 - 1 = 3$$

• Direct Sub Yields $\frac{0}{0}$

- \circ factor
- multiply by the conjugate
- $\circ~{\rm find}$ a common denominator
- expand any powers
- $\circ\,$ replace an absolute value with the appropriate part of the piecewise function

Infinite Limits

- $\lim_{x \to a} f(x) = \pm \infty$
- Direct Sub Yields $\frac{\#}{0}$
 - $\circ\,$ Your answer will be $-\infty$ or ∞
 - Simply (factor) the function as much as possible
 - $\circ~$ Look at the factor in the denominator that is giving you 0
 - \circ Determine if this factor is approaching a small + or a small number as x approaches a
 - $\circ \ {}^\pm_+ = +, \ {}^\pm_- = +, \ {}^\pm_+ = -, \ {}^\pm_- = -$
- Vertical Asymptotes
 - $\circ x = a$
 - $\circ\,$ Solve your denominator equal to 0
 - verify that x = a is a vertical asymptote by seeing if $\lim_{x \to a^{-}} f(x) = \pm \infty \text{ OR } \lim_{x \to a^{+}} f(x) = \pm \infty \text{ OR } \lim_{x \to a} f(x) = \pm \infty$

Continuity

- For a function to be continuous at x = a, we need
 - 1. f(a) defined
 - 2. $\lim_{x \to a} f(x)$ exists

3.
$$f(a) = \lim_{x \to a} f(x)$$

- We have 4 types of discontinuities:
 - $\circ~{\rm removable}$
 - * violates $f(a) = \lim f(x)$
 - * You'll have a removable discontinuity when you cancel out a factor from the numerator and denominator
 - * You can fix a removable discontinuity by "filling in the hole" and making $f(a) = \lim_{x \to a} f(x)$
 - jump
 - * violates $\lim_{x \to a} f(x)$ exists (b/c $\lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x)$)
 - \circ infinite
 - * violates f(a) defined and sometimes $\lim_{x \to a} f(x)$ exists
 - oscillating
 - * violates f(a) defined and $\lim_{x \to a} f(x)$ exists

Limits at Infinity

- $\lim_{x \to \pm \infty} f(x) = L$
- tell us the *end behavior* of a function
- Horizontal Asymptotes
 - If $\lim_{x \to \pm \infty} f(x)$ is a number L, then y = L is a horizontal asymptote.
- Note that we can have infinite limits at infinity: $\lim_{x \to +\infty} f(x) = \pm \infty$

• Polynomials

- $\circ \lim_{x \to \pm \infty} x^n = \infty \text{ when } n \text{ is even}$
- $\circ \lim_{x \to \infty} x^n = \infty \text{ and } \lim_{x \to -\infty} x^n = -\infty \text{ when } n \text{ is odd}$
- $\lim_{x \to \pm \infty} p(x) = \lim_{x \to \pm} a \cdot x^n = \pm \infty$ depending on the degree of x^n (even or odd) and the sign of a

$$\lim_{x \to +\infty} x^{-n} = \lim_{x \to +\infty} \frac{1}{x^n} = 0$$

• Rational Functions where numerator and denominator are *polynomials*

- \circ identify the highest power of x in the denominator
- $\circ\,$ divide every term in the function by that highest power from the denominator
- \circ simplify each term
- take the limit of each term (recall: $\lim_{x \to \pm \infty} \frac{1}{x^n} = 0$)
- $\circ\,$ If the degree of the top polynomial is less than the degree of the bottom polynomial, y=0 is a horizontal asymptote
- If the degrees are the same, the horizontal asymptote is the fraction of the leading coefficients
- If the degree of the top polynomial is greater than the degree of the bottom polynomial, there are no horizontal asymptotes
- If the degree of the top polynomial is exactly one more than the degree of the bottom polynomial, there are no horizontal asymptotes, but there is a slant asymptote
 - $\hfill\square$ Find the equation of a slant asymptote by long polynomial division

• Rational Functions where numerator and denominator may not be polynomials

- $\circ\,$ identify the highest power of x in the denominator
 - $\hfill\square$ Is the power even or odd when pulled outside of the radical?
 - $\hfill\square$ If even outside of the radical, that power of x will always be positive.
 - \Box If odd out outside of the radical, that power of x depends on if $x \to -\infty$ or $x \to \infty$.
- $\circ~$ divide every term in the function by that highest power from the denominator
 - \Box Underneath any radicals, make sure you are dividing each term by the power of x that is appropriate for within the radical as it is outside the radical
 - $\hfill\square$ Outside the radical, divide by the appropriate sign and power on x
- $\circ~{\rm simplify}~{\rm each}~{\rm term}$
- take the limit of each term (recall: $\lim_{x \to +\infty} \frac{1}{x^n} = 0$)

MATH 1040: Derivatives

The Limit Definition of a Derivative

• derivative (as a function) = slope of tangent line *anywhere* on the curve

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- Derivative Notation: y', f'(x), f', $\frac{dy}{dx}$, $\frac{d}{dx}(f(x))$
- If we graph the derivative function, we are simply graphing the *slopes of the tangent lines* to our orginal function

function graph	derivative graph
increasing	positive (above x -axis)
decreasing	negative (below x -axis)
smooth min/max	zero (cross x -axis)
constant	zero (over an interval)
linear	constant
quadratic	linear

- A function will not be differentiable at a point (can't find derivative) if it has the following at that point:
 - discontinuity
 - sharp point (corner or cusp)
 - vertical tangent (supa steeeeep)
- If a function is differentiable at a, then it is continuous at a.

EQUATION OF A TANGENT LINE

• We need three things to find the equation of a line:

 \circ slope (m)

- x-point (x_1)
- \circ y-point (y_1)
- If we are finding the equation of a tangent line, the **slope of the tangent line** will be the **derivative**.
- To find the slope of the tangent line at our x_1 value, we plug in x_1 into the derivative.

 $\circ m_{tan}\Big|_{x_1} = f'(x_1)$

• To find the y_1 value, we plug in our x_1 value into the original function

 $\circ \ y_1 = f(x_1)$

• To find the slope of a **normal** line, first find the slope of the tangent line, then flip and negate it.

$$\circ m_{norm} = -\frac{1}{m_{tan}}$$

Derivative Rules

- $\frac{d}{dx}(c) = 0$ • $\frac{d}{dx}(cf(x)) = cf'(x)$ • $\frac{d}{dx}(x) = 1$ • $\frac{d}{dx}(x^n) = nx^{n-1}$ • $\frac{d}{dx}(e^x) = e^x$
- We can rewrite how functions look so we can use power rule:
 - $\circ \quad \frac{1}{x^n} = x^{-n}$ $\circ \quad \sqrt[m]{x^n} = x^{n/m}$
- a function has a *horizontal tangent line* when f'(x) = 0 because the slope of a horizontal tangent line is zero
- We can find higher order derivatives by taking the derivative of the previous derivative.
 - second derivative: y''
 - third derivative: y'''
 - fourth derivative: $y^{(4)}$
 - n^{th} derivative: $y^{(n)}$

Product Rule and Quotient Rule

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$$

• Sometimes it's easier to simplify your function first before trying these rules.

Derivatives of Trig Functions

$\frac{d}{dx}(\sin x) = \cos x$	$\frac{d}{dx}(\cos x) = -\sin x$
$\frac{d}{dx}(\tan x) = \sec^2 x$	$\frac{d}{dx}(\cot x) = -\csc^2 x$
$\frac{d}{dx}(\sec x) = \sec x \tan x$	$\frac{d}{dx}(\csc x) = -\csc x \cot x$

- Derivatives of $\sin x$ and $\cos x$ work in a cycle
 - If you want to find the n^{th} derivative of something in this cycle, divide n by 4, find your remainder, then count your remainder away from your original function

 $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$

Applications of Derivatives

- Physics
 - \circ position: s(t) ft
 - \circ velocity: v(t) = s'(t) ft/s
 - \circ acceleration: $a(t)=v'(t)=s''(t)~{\rm ft/s^2}$
 - \circ speed = |v(t)| ft/s
 - $\circ~$ To find an object's maximum height:
 - 1. First find when the object reaches its max height by solving where v(t) = 0.
 - 2. Then, find the max height by plugging the time you found in Step 1 into your position function, s(t).
 - $\circ~$ To find the velocity in which an object strikes the ground:
 - 1. First find when an object strikes the ground by solving where s(t) = 0.
 - 2. Then, find the velocity it strikes the ground by plugging the time you found in Step 1 into your velocity function, v(t).
 - Velocity's sign signifies direction. An object possibly changes direction when v(t) = 0
 - * If v(t) < 0, the object is moving down or to the left
 - * If v(t) > 0, the object is moving up or to the right

Chain Rule

• Chain Rule tells us how to take the *derivative of a composition of functions*

 $\circ \ \frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$

- Chain Rule Steps
 - 1. First, identify your outer and inner functions.
 - 2. Take the derivative of your first, leaving your inside function unchanged.

 $\circ f'(g(x))$

3. Multiply by the derivative of the inside function

 $\circ f'(g(x)) \cdot g'(x)$

• You can use Chain Rule as many times as needed to ensure you take the derivative of your entire composition of functions.

MATH 1070: Derivatives and Applications

Implicit Differentiation

- Explicit vs Implicit
 - **Explicit Form:** An equation that is solved for a single variable; $y = x^2 + 2x 1$
 - Implicit Form: An equation that is not solved for one variable; $xy + x^2 = \sin(y) + 6x$
- Implicit Differentiation Steps
 - 1. Take the derivative of **both sides** with respect to x, $\frac{d}{dx}$.
 - 2. Solve the resulting equation for your derivative notation, y' or $\frac{dy}{dr}$
- Chain Rule Reminders

$$\frac{d}{dx}(y) = y' = \frac{dy}{dx} \qquad \qquad \frac{d}{dx}(y^2) = 2yy' = 2y\frac{dy}{dx} \qquad \qquad \frac{d}{dx}(y^3) = 3y^2y' = 3y^2\frac{dy}{dx}$$

Derivatives of Logarithmic and Exponential Functions

$$\frac{d}{dx}(\log_b(g(x)) = \frac{1}{g(x)\ln(b)} \cdot g'(x) \qquad \frac{d}{dx}b^{g(x)} = b^{g(x)} \cdot g'(x) \cdot \ln(b)$$
$$\frac{d}{dx}(\ln(g(x)) = \frac{1}{g(x)} \cdot g'(x) \qquad \frac{d}{dx}e^{g(x)} = e^{g(x)} \cdot g'(x)$$

Logarithmic Differentiation

- You **MUST** use Logarithmic Differentiation when you have a variable in your **base AND** a variable in your **exponent**.
- You can use Logarithmic Differentiation for taking the derivative of any function, though.
- Laws of Logarithms

$$\ln(xy) = \ln(x) + \ln(y) \qquad \qquad \ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y) \qquad \qquad \ln(x^r) = r \cdot \ln(x)$$

- Laws of Logarithms Steps
 - 1. Take the natural log (ln) of **both sides** of the equation.
 - 2. Use Law of Logarithms to simplify the result.
 - 3. Use implicit differentiation to take the derivative of **both sides**.
 - 4. Isolate your derivative; y' or $\frac{dy}{dx}$.
 - 5. Substitute y back into the result.

Inverse Trig Functions

- Inverse Trig Functions take in a **number** as their input and give an **angle** as their output.
- Consider the restricted domain of each trig function to verify the existence of its inverse.

Function	Domain	Range
$\sin^{-1}(x)$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$\cos^{-1}(x)$	[-1, 1]	$[0,\pi]$
$\tan^{-1}(x)$	$(-\infty,\infty)$	$(-\frac{\pi}{2},\frac{\pi}{2})$
$\cot^{-1}(x)$	$(-\infty,\infty)$	$(0,\pi)$
$\sec^{-1}(x)$	$(-\infty, -1] \cup [1, \infty)$	$\left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$
$\csc^{-1}(x)$	$(-\infty, -1] \cup [1, \infty)$	$\left[-\frac{\pi}{2},0\right)\cup\left(0,\frac{\pi}{2}\right]$
	17	

• Example: $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$ because $\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$ on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Derivatives of Inverse Trig Functions

$$\frac{d}{dx} \left(\sin^{-1}(x) \right) = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx} \left(\cos^{-1}(x) \right) = \frac{-1}{\sqrt{1 - x^2}} \qquad \text{for } -1 < x < 1$$
$$\frac{d}{dx} \left(\tan^{-1}(x) \right) = \frac{1}{1 + x^2} \qquad \frac{d}{dx} \left(\cot^{-1}(x) \right) = \frac{-1}{1 + x^2} \qquad \text{for } -\infty, x, \infty$$
$$\frac{d}{dx} \left(\sec^{-1}(x) \right) = \frac{1}{|x|\sqrt{x^2 - 1}} \qquad \frac{d}{dx} \left(\csc^{-1}(x) \right) = \frac{-1}{|x|\sqrt{x^2 - 1}} \qquad \text{for } |x| > 1$$

• DO NOT FORGET ABOUT CHAIN RULE!

$$\circ \ \frac{d}{dx} \left(\sin^{-1}(g(x)) \right) = \frac{1}{\sqrt{1 - (g(x))^2}} \cdot g'(x) = \frac{g'(x)}{\sqrt{1 - (g(x))^2}}$$

Related Rates

- 1. Read the problem, make a sketch, write down given information, and identify the rate to find.
- 2. Write one or more equations that express the basic relationship among the variables.
- 3. Introduce rates of change by differentiating the appropriate equation with respect to time, t.
- 4. Substitute known values and solve for the desired quantity.
- 5. Check that units are consistent and the answer is reasonable; i.e. does your answer have the correct sign? It helps to state our final answer as a complete sentence.

Similar Triangles Reminder

Maxima and Minima

- Absolute Extrema
 - \circ absolute max: highest function value over the entire domain
 - $\circ\,$ absolute min: lowest function value over the entire domain
- Extreme Value Theorem: A function that is continuous on a closed interval [a, b] has an absolute max and an absolute min on [a, b]
- Local Extrema
 - local max: highest function value in a small neighborhood
 - $\circ\,$ local min: lowest function value in a small neighborhood
 - $\circ\,$ Note: local extrema cannot occur at endpoints
- Critical Point: a point c in the domain of f such that f'(c) = 0 or f'(c) does not exist
- Closed Interval Method: an algebraic way to locate absolute extrema on a continuous function over [a, b]
 - 1. Find the critical points of f
 - 2. Evaluate f at the critical points and the endpoints
 - 3. Your absolute max is the largest function value and your absolute min is the smallest function value

Rolle's Theorem and MVT

- Rolle's Theorem: If a function is continuous on [a, b], differentiable on (a, b), and $\mathbf{f}(\mathbf{a}) = \mathbf{f}(\mathbf{b})$, then there is a point c in (a, b) where f'(c) = 0.
 - $\circ\,$ Helps us find where we have horizontal tangent lines
- Mean Value Theorem: If a function is continuous on [a, b] and differentiable on (a, b), then there is a point c in (a, b) where $f'(c) = \frac{f(b) f(a)}{b a}$.
 - \circ Helps us find where the slope of any tangent lines is the same as the slope of the secant line between a and b

What the First Derivatives Tell Us

• Intervals of Increase/Decrease

- f'(x) > 0 tells us that f(x) is increasing
- f'(x) < 0 tells us that f(x) is decreasing

• Increasing/Decreasing Test

- 1. Find all x-values where f'(x) = 0 or f'(x) does not exist
- 2. Make a sign chart for f'(x) with the sign of the first derivative between these x-values
- 3. f'(x) + means that f(x) is increasing on that interval; f'(x) means that f(x) is decreasing on that interval

• The First Derivative Test for Local Extrema

- We have a *local min* at a critical point c if f'(x) changes from to + at c
- We have a local max at a critical point c if f'(x) changes from + to. at c
- There is no local extrema at c if f'(x) does not change sign at c
- One Local Extrema \implies Absolute Extrema: If a function has *only one* local extrema, then that local extrema is an absolute extrema

What the Second Derivatives Tell Us

• Intervals of Concavity

- f''(x) > 0 tells us that f(x) is concave up (CCU)
- f''(x) < 0 tells us that f(x) is concave down (CCD)
- Concavity Test
 - 1. Find all x-values where f''(x) = 0 or f''(x) does not exist
 - 2. Make a sign chart for f''(x) with the sign of the first derivative between these x-values
 - 3. f''(x) + means that f(x) is CCU on that interval; f''(x) means that f(x) is CCD on that interval
- Inflection Point: a point on f(x) where the *concavity changes*

• Second Derivative Test for Local Extrema:

- We have a *local min* at a critical point c if f''(c) > 0
- We have a *local max* at a critical point c if f''(c) < 0
- The test is inconclusive if f''(c) = 0

Sketching Functions

1. Domain

- Identify the domain of the function on the given interval by looking for values that must be excluded from our knowledge of the parent functions.
- i.e. the denominator = 0 for rational functions

2. Intercepts

- y-intercept: Set x = 0 and solve for y (crosses y-axis)
- x-intercept: Set y = 0 and solve for x (crosses x-axis)

3. Symmetry

- Evaluate f(-x).
 - **EVEN:** symmetric about *y*-axis; f(-x) = f(x)
 - **ODD:** symmetric about origin; f(-x) = -f(x)
- Look for periodic functions too (i.e. $\sin x$, $\cos x$)

4. Asymptotes

- Horizontal Asymptotes: Evaluate $\lim_{x \to \pm \infty} f(x)$.
 - If an answer is a number L, there is a horizontal asymptote, y = L.
- Vertical Asymptotes: Solve denominator = 0.
 - $\circ x = a$ could be a vertical asymptote, we should verify with limits.
 - Verify Vertical Asymptote: Evalute $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$. If answer is ∞ or $-\infty$, then vertical asymptotes is x = a.
- Slant Asymptote: If the degree of the numerator is *one more* than the degree of denominator, we will have a slant asymptote.
 - Use polynomial long division to find the equation of the slant asymptote.

5. Intervals of Increase and Decrease

- find the first derivative, y'
- Make a sign chart for y'
- y' < 0: y is decreasing
- y' > 0: y is increasing

6. Local Extrema

- local min location: y' changes from to +
- local max location: y' changes from + to -
- local extrema value: evaluate y at these points

7. Concavity and Points of Inflection

- find the second derivative, y''
- make a sign chart for y''
- y'' < 0: y concave down (CCD)
- y'' > 0: y concave up (CCU)
- inflection points: where the sign changes
- find the y values at these points for graphing purposes
- 8. Sketch the Function: Using the information found in 1-7, sketch the function

Optimization Problems

- Objective Function: what you want to "minimize" or "maximize" or make "smallest" or "largest"
- Constraints: limitations to follow
- 1. Read the problem carefully and define all variables.
 - What quantities are given?
 - What objective function are we trying to minimize or maximize?
 - What constraints are given?
- 2. Draw a diagram if possible.
- 3. Express the function to be optimized in terms of the variables.
- 4. Express the constraints in terms of the variables.
- 5. Use the constraints to eliminate all but one variable of the objective function.
- 6. Find the domain of the objective function.
- 7. Use calculus to find the absolute extrema of the objective function on the domain.

• Find the critical points. (f'(x) = 0 or f'(x) DNE)

- 8. Verify that you have found the location of the absolute extrema. Use can use:
 - Closed Interval Method (Extreme Value Theorem)
 - $\circ~{\rm Find}$ the critical points of f
 - $\circ\,$ Evaluate f at the critical points and the endpoint
 - Establish the absolute max or absolute min from the function values
 - First Derivative Test
 - Find the critical points, c, of f
 - $\circ~$ Draw a sign chart for f'
 - If f' goes from to + at c, you have an absolute min
 - $\circ~$ If f' goes from + to at c, you have an absolute max.
 - Second Derivative Test
 - $\circ~$ Determine the local extreme values of f
 - If f(c) is a local min and f''(x) > 0, then we have an absolute min at c
 - If f(c) is a local max and f''(x) < 0, then we have an absolute max at c
- 9. Write a summary sentence answering the question.

Linear Approximations and Differentials

- Linear Approximation to f at a: L(x) = f(a) + f'(a)(x a)
 - **Underestimate:** f''(a) > 0; linear approximation is below the curve
 - **Overestimate:** f''(a) < 0; linear approximation is above the curve
- Differential: dy = f'(x)dx
 - $\circ~$ How much a small change in input dx affects the change in output dy

Limits with Indeterminate Forms

- Quotient Indeterminate Forms $(\frac{0}{0}, \frac{\infty}{\infty})$
 - We can use L'Hopital's Rule to avoid these quotient indeterminate forms

• L'Hopital's Rule:
$$\lim_{x \to a} \frac{f(x)}{g(x)} \stackrel{\mathrm{L}}{=} \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

- Related Indeterminate Forms $(\infty \cdot 0, \infty \infty)$
 - $\circ\,$ Use algebra to rearrange your function to appear as a single quotient. Some options...
 - * move one function to the denominator
 - $\ast~$ find a common denominator
 - $\circ~$ Use L'Hopital's Rule as needed on any quotient indeterminate forms.
- Indeterminate Powers $(1^{\infty}, 0^0, \infty^0)$
 - Rewrite your function using e^x and $\ln(x)$, the fact that they are inverses, and laws of logarithms.

$$f(x)^{g(x)} = e^{\ln(f(x)^{g(x)})} = e^{g(x) \cdot \ln(f(x))}$$

• First, take the limit of just the exponent, $g(x) \cdot \ln(f(x))$, of your rewritten function.

$$\lim_{x \to a} \left(g(x) \cdot \ln(f(x)) \right) = \#$$

- * You may need to use Related Indeterminate Form methods and L'Hopital's Rule.
- $\ast\,$ You will get a numerical answer.
- $\circ~$ Exponentiate the value you found from Step 3 with base e. This is your final answer.

$$\lim_{x \to a} f(x)^{g(x)} = e^{\#}$$

Antiderivatives and Indefinite Integrals

- Antiderivative: If F(x) is an antiderivative of f(x) on an interval I, then all the antiderivatives of f(x) on I have the form F(x) + C where C is an arbitrary constant.
- When taking antiderivatives think, "What can I take the derivative of to get what I see here?"
- We can check our work with differentiation.

$$\int f(x) \, dx = F(x) + C$$

•
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$
; for $n \neq -1$

- Add one to our exponent
- $\circ~$ Divide by the new exponent

•
$$\int cf(x) \, dx = c \int f(x)$$

•
$$\int (f(x) + g(x)) \, dx = \int f(x) \, dx + \int g(x) \, dx$$

•
$$\int \frac{1}{x} \, dx = \ln|x| + C$$

Differential Equations/Initial Value Problems

- If we are given a function and an initial value, we can find the value of our constant +C
 - $\circ\,$ Find the antiderivative of the given function.
 - \circ Find the value for +C by plugging in the given initial value into your antiderivative.
- We can work backwards from acceleration and find our velocity and position functions given an initial velocity and initial position.

Sigma (Summation) Notation

• If a_m, a_{m+1}, \dots, a_n are real numbers and m and n are integers such that $m \leq n$, then

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + \dots + a_n$$

• Summation Properties: Let n be a positive integer and c be a real number.

•
$$\sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k$$

• $\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$

• Sums of Infinite Powers: (don't have to memorize) Let n be a positive integer.

$$\circ \sum_{k=1}^{n} c = cn$$

$$\circ \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\circ \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\circ \sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

Riemann Sums

- We can approximate the area under a curve by drawing rectangles between our curve and the x-axis and adding up the areas of all the rectangles.
- **Riemann Sum:** Suppose f is defined on a closed interval [a, b], which is divided into n sub-intervals of equal length Δx . If x_k^* is a point on the k^{th} sub-interval $[x_{k-1}, x_k]$, for $k = 1, 2, \dots, n$, then the Riemann Sum for f on [a, b] is

$$\sum_{k=1}^{n} f(x_k^*) \Delta x = f(x_1^*) \Delta x + f(x_2^*) \Delta x + \dots + f(x_n^*) \Delta x$$

- width: $\Delta x = \frac{b-a}{n}$; this is the width of each rectangle were *n* is the number of rectangles used
- **height:** $f(x_k^*)$; this is the height of the k^{th} rectangle
- **area:** $f(x_k^*) \cdot \Delta x$; this is the area of the k^{th} rectangle
- Left Riemann Sum: $x_k^* = a + (k-1)\Delta x$
- Right Riemann Sum: $x_k^* = a + k\Delta x$
- $\circ\,$ Midpoint Riemann Sum: $x_k^* = a + (k 1/2) \Delta x$

Definite Integrals

- Definite Integrals measure the *net area*
 - \circ net area = (area above x-axis) (area below x-axis)
- We can find the definite integral between a and b by taking the limit of a Riemann Sum. This limit as $n \to \infty$ is pushing the number of rectangles under our curve to ∞ .

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_{k}^{*}) \Delta x$$

• Properties of Definite Integrals:

$$\circ \int_{a}^{a} f(x) dx = 0 \qquad \qquad \circ \int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$\circ \int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx \qquad \qquad \circ \int_{a}^{b} f(x) dx = \int_{a}^{p} f(x) dx + \int_{p}^{b} f(x) dx$$

$$\circ \int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx \qquad \qquad \circ \int_{a}^{b} |f(x)| dx \text{ finds total area}$$

The Fundamental Theorem of Calculus (Part I)

If f is continuous on [a, b], then the area function

$$A(x) = \int_0^x f(t) dt$$
, for $a \le x \le b$

is continuous on [a, b] and differentiable on (a, b). The area function satisfies A'(x) = f(x). Equivalently,

$$A'(x) = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

Given Integral	How to Get Derivative
$\int_{a}^{x} f(t) dt$	plug in x for t
$\int_{x}^{a} f(t)dt$	reverse limits of integration, multiply by -1
	plug in x for t
$f(x) = \int_{a}^{g(x)} f(t)dt$	plug in $g(x)$ for t, multiply by $g'(x)$
$\int f(x) = \int_{a(x)}^{a} f(t)dt$	reverse limits of integration, multiply by -1
	plug in $g(x)$ for t, multiply by $g'(x)$
$f(x) = \int_{g(x)}^{h(x)} f(t)dt$	split the limits of integration as $\int_{g(x)}^{0} f(t)dt + \int_{0}^{h(x)} f(t)dt$ reverse limits of integration of $\int_{g(x)}^{0} f(t)dt$ and multiply by -1
	reverse limits of integration of $\int_{-\infty}^{\infty} f(t) dt$ and multiply by -1
	plug $g(x)$ and $h(x)$ in for t and multiply by $g'(x)$ and $h'(x)$

The Fundamental Theorem of Calculus (Part II)

If f is continuous on [a, b] and F is any antiderivative of f on [a, b], then $\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(x) - F(x)$

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$$

Symmetry of Functions

Mean Value Theorem for Integrals

- Average Value
 - The average value of an integrable function f on the interval [a, b] is $\bar{f} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$
 - The average value is the height of the rectangle with base [a, b] that has the same net area as the region bounded by the graph of f and the x-axis on the same interval [a, b]
- MVT for Integrals: Let f be continuous on the interval [a, b]. There exists a point c in (a, b) where

$$f(c) = \bar{f} = \frac{1}{b-a} \int_a^b f(t) dt$$

u-Substitution: Indefinite Integrals

$$\int f(g(x)) \cdot g'(x) \, dx = \int f(u) \, du = F(u) + C = F(g(x)) + C$$

- 1. Identify an inner function u = g(x) such that a constant multiple of u' = g'(x) appears in the integrand.
- 2. Substitute u = g(x) and du = g'(x) dx in the integral.
- 3. Evaluate the new indefinite integral with respect to u.
- 4. Write the result in terms of x using u = g(x).

u-Substitution: Definite Integrals

$$\int_{a}^{b} f(g(x)) \cdot g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du = F(g(b)) - F(g(a))$$

- 1. Identify an inner function u = g(x) such that a constant multiple of u' = g'(x) appears in the integrand.
- 2. Substitute u = g(x) and du = g'(x) dx in the integral as well as g(a) = a and g(b) = b for your limits of integration.
- 3. Evaluate the new definite integral with respect to u with your new limits of integration.