
JIT 1.1, 1.2, 1.3

• Adding and Subtracting Fractions
� You have to get a common denominator before adding/subtracting fractions

• Multiplying Fractions
� multiply numerators straight across
� multiply denominators straight across

• Dividing Fractions
� Reciprocate (flip) bottom fraction and multiply

• Parenthesis
� when a value or a negative sign is in front of a parenthesis, that value distributes to everything
inside parenthesis

JIT 1.4, 1.5, 1.8

• Rules for exponents:

a�n = 1/an; a 6= 0 A negative exponent belongs on the other side of the fraction
a0 = 1; a 6= 0 Anything raised to the 0 power is 1
ax · ay = ax+y Multiplying with the same base ! add exponents
ax/ay = ax�y Dividing with same base ! subtract exponents
(ax)y = axy exponent raised to an exponent ! multiply exponents

ax · bx = (ab)x exponent can ”distribute” when multiplying with di↵erent bases and same
exponent

ax/bx = (a/b)x exponent can ”distribute” when dividing with di↵erent bases and same expo-
nent

• Roots
� n

p
xm = ( n

p
x)

m
= xm/n

• Intervals, Number lines, and Inequalities

Interval Number line Inequality
( or ) open circle < or >
[ or ] closed circle  or �

• Set Notation
� Union ([): combination of both sets
� Intersection (\): overlap between two sets



JIT 4.1, 4.2

• a function should pass the vertical line test

parent domain range
y = x (�1,1) (�1,1)
y = |x| (�1,1) [0,1)
y = x2 (�1,1) [0,1)
y = x3 (�1,1) (�1,1)
y = ex (�1,1) (0,1)

y = ln(x) (0,1) (�1,1)
y = 1/x (�1, 0) [ (0,1) (�1, 0) [ (0,1)
y = 1/x2 (�1, 0) [ (0,1) (0,1)
y =

p
x [0,1) [0,1)

y = 3
p
x (�1,1) (�1,1)

• Equation of a line
� slope: m = rise

run = y2�y1
x2�x1

� perpendicular slope: m? = � 1
m

� point-slope formula: y � y1 = m(x� x1)
• Piecewise Functions

� f(x) =

(
function 1 how much you show

function 2 how much you show

JIT 4.3, 4.4, 4.5, 4.6

• ODD Functions:
� symmetric about origin
� f(�x) = �f(x)

• EVEN Functions:
� symmetric over y-axis
� f(�x) = f(x)

• Vertical Shifts
� UP: add number to outside of function; i.e. y = x+ 2
� DOWN: subtract number to outside of function; i.e. y = x� 2

• Horizontal Shifts
� LEFT: subtract a negative number (see positive) inside function; i.e. y = (x+ 2)
� RIGHT: subtract a positive number (see negative) inside function; i.e. y = (x� 2)

• Reflections
� reflect over x-axis: �f(x)
� reflect over y-axis: f(�x)



JIT 4.7

• Solving a system of equations by GRAPHING:
� intersection is solution
� if lines are parallel ! no solution
� if lines are the same ! infinite solutions

• Solving a system of equations by SUBSTITUTION:
1. Choose one equation and solve it for one variable
2. Insert what you found from Step 1 into the other equation and solve for the single variable
3. Make sure you have solved for both variables

JIT 5.1, 5.2, 5.3, 5.5

• Radians ! Degrees: multiply by 180
⇡

• Degrees ! Radians: multiply by ⇡
180

• know unit circle
• know graphs for trig functions

sin(x) csc(x) = 1
sin(x)

cos(x) sec(x) = 1
cos(x)

tan(x) cot(x) = 1
tan(x)

• 2⇡ period: sin, cos, csc, sec
• ⇡ period: tan, cot
• Given the value of one trig function, you can find the others using:

� SOHCAHTOA
� which quadrant the triangle lies in
� Pythagorean Theorem

JIT 5.4

• y = A sin(B(✓ � C)) +D
� A: amplitude
� B: period; divide normal period by B
� C: horizontal shift
� D: vertical shift



JIT 15.1

• Pythagorean Identities (memorize):
� cos2 ✓ + sin2 ✓ = 1
� 1 + tan2 ✓ = sec2 ✓
� cot2 ✓ + 1 = csc2 ✓

• Addition/Subtraction Formulas (don’t have to memorize):
� sin(x+ y) = sin(x) cos(y) + cos(x) sin(y)
� cos(x+ y) = cos(x) cos(y)� sin(x) sin(y)
� sin(x� y) = sin(x) cos(y)� cos(x) sin(y)
� cos(x� y) = cos(x) cos(y) + sin(x) sin(y)

• Double-Angle Formulas (memorize, but we don’t use a lot):
� sin(2x) = 2 sin(x) cos(x)
� cos(2x) = cos2(x)� sin2(x) or = 2 cos2(x)� 1 or = 1� 2 sin2(x)

• Half-Angle Formulas (memorize, but we don’t use a lot):
� cos2(x) = 1+cos(2x)

2

� sin2(x) = 1�cos(2x)
2

• Solving Equation with Trig
� get as close to angle as you can, then ask yourself, “Where does this happen on the unit circle?”

JIT 10.1, 10.2, 10.3, 10.4

• Find a common factor within all terms and take it out of each term
• Special Formulas for Factoring Quickly

� x2 � y2 = (x+ y)(x� y)
� (x+ y)2 = x2 + 2xy + y2

� (x� y)2 = x2 � 2xy + y2

� x3 + y3 = (x+ y)(x2 � xy + y2)
� x3 � y3 = (x� y)(x2 + xy + y2)

• Standard Factoring
� ask, “What multiplies to get my last number and adds to get my middle number?”

• Factoring by Grouping
� group terms with common factors
� remove the greatest common factor from each group
� you should have the same factor in each group and then what is leftover from each group is is
your other factor

• Roots and Factors
� r is a root when f(r) = 0
� r is a root () x� r is a factor
� if you already know one factor, you can use long polynomial division to find your other factors

• Completing the Square
� factor out the number in front of x2 (a)
� take the coe�cient on x, divide it by 2, and square it
� this will be what you need to add and subtract
� complete the square
� factor a back in



JIT 10.5, 10.6

• Rationalizing with Conjugates
� CONJUGATE: change the sign in the middle of two terms where one involves a square root
� multiply the top and bottom of rational function by the conjugate

• Pulling things out from Radicals
� split the stu↵ under the radical into factors you can pull out from under the root
� when you have an EVEN root (p, 4

p, 6
p, ...), if you pull out something with an odd exponent

it needs absolute values around it
� when you have an ODD root ( 3

p, 5
p, 7

p, ...), you don’t have to worry about absolute values

JIT 3.1, 3.2, 3.3

• Techniques for Solving Equations
� isolate your variable by moving all terms with your variable to one side and terms without
to the other side

� You can solve a quadratic equation by factoring, quadratic formula, or completing the
square

⇤ quadratic formula: x = �b±
p
b2�4ac
2a

� Cross multiplication can get rid of fractions on both sides of your equal sign
⇤ be sure to check your answer back in the original equation for 0s in the denominator

� common denominators can help you get rid of fractions and allow you to just solve with
the numerators

⇤ be sure to check your answer back in the original equation for 0s in the denominator
• Rational Functions: y = p(x)

q(x)

� Find domain: anything that doesn’t belong in domain will be when q(x) = 0
� Find roots: we will cross the x-axis when p(x) = 0
� Find y-intercepts: plug in 0 into entire function; p(0)

q(0)



Ch 2.1: The Idea of Limits

• secant lines: connect two points on a curve
� slope: msec =

s(b)�s(a)
b�a

� average velocity
• tangent lines: touch the curve at a single point

� slope: we can conjecture the slope of a tangent line by bringing the points of a secant line
closer and closer together

� instantaneous velocity

Ch 2.2: Finding Limits Graphically

• NOTATION: lim
x!a

f(x) = L

• Limits tell us what our functions appears to be approaching as x closes in around a.
(aka: limits don’t care about holes!)

• one-sided limits:
� right-sided limits approach a from the right: lim

x!a+
f(x) = L

� left-sided limits approach a from the left: lim
x!a�

f(x) = L

� If lim
x!a+

f(x) = L and lim
x!a�

f(x) = L, then lim
x!a

f(x) = L

� If lim
x!a+

f(x) = L and lim
x!a�

f(x) = M , then lim
x!a

f(x) DNE

Ch 2.3: Finding Limits Algebraically

• Limit Laws:
� lim

x!a
(f(x)± g(x)) = lim

x!a
f(x)± lim

x!a
g(x)

� lim
x!a

(cf(x)) = c lim
x!a

f(x)

� lim
x!a

(f(x)g(x)) = lim
x!a

f(x) · lim
x!a

g(x)

� lim
x!a

⇣
f(x)
g(x)

⌘
=

lim
x!a

f(x)

lim
x!a

g(x) (if lim
x!a

g(x) 6= 0)

� lim
x!a

(f(x))n =
⇣
lim
x!a

f(x)
⌘n

� lim
x!a

(f(x))1/n =
⇣
lim
x!a

f(x)
⌘1/n

� lim
x!a

c = c
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Ch 2.3: Finding Limit Algebraically Continued

• Direct Substitution:
� always try direct substitution first when calculating a limit!
� plug in a into the function. If the result is a number, this is the answer to your limit.
� lim

x!2
(x2 � 1) = 22 � 1 = 4� 1 = 3

• Direct Sub Yields 0
0

� factor
� multiply by the conjugate
� find a common denominator
� expand any powers
� replace an absolute value with the appropriate part of the piecewise function

• Squeeze Theorem
� If f(x)  g(x)  h(x) for all x near a and lim

x!a
f(x) = L and lim

x!a
h(x) = L, then lim

x!a
g(x) = L.

� start with inequality, take limit of each function, evaluate outer limits.
� If the outer limits match, the limit of the inner function is also the same number. If not,
Squeeze Theorem is inconclusive.

Ch 2.4: Infinite Limits

• lim
x!a

f(x) = ±1
• Direct Sub Yields number

0
� Your answer will be �1 or 1
� Simply (factor) the function as much as possible
� Look at the factor in the denominator that is giving you 0
� Determine if this factor is approaching a small + or a small � number as x approaches a
� +

+ = +, �
� = +, �

+ = �, +
� = �

• Vertical Asymptotes
� x = a
� Solve your denominator equal to 0
� verify that x = a is a vertical asymptote by seeing if

lim
x!a�

f(x) = ±1 OR lim
x!a+

f(x) = ±1 OR lim
x!a

f(x) = ±1
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Ch 2.5: Limits at Infinity

• lim
x!±1

f(x) = L

• tell us the end behavior of a function
• Horizontal Asymptotes

� If lim
x!±1

f(x) is a number L, then y = L is a horizontal asymptote.

• Note that we can have infinite limits at infinity: lim
x!±1

f(x) = ±1
• Polynomials

� lim
x!±1

xn = 1 when n is even

� lim
x!1

xn = 1 and lim
x!�1

xn = �1 when n is odd

� lim
x!±1

p(x) = lim
x!±

a · xn = ±1 depending on the degree of xn (even or odd) and the sign of a

� lim
x!±1

x�n = lim
x!±1

1
xn = 0

• Rational Functions where numerator and denominator are polynomials
� identify the highest power of x in the denominator
� divide every term in the function by that highest power from the denominator
� simplify each term
� take the limit of each term (recall: lim

x!±1
1
xn = 0)

� If the degree of the top polynomial is less than the degree of the bottom polynomial, y = 0 is
a horizontal asymptote

� If the degrees are the same, the horizontal asymptote is the fraction of the leading coe�cients
� If the degree of the top polynomial is greater than the degree of the bottom polynomial, there
are no horizontal asymptotes

� If the degree of the top polynomial is exactly one more than the degree of the bottom polyno-
mial, there are no horizontal asymptotes, but there is a slant asymptote

⇤ Find the equation of a slant asymptote by long polynomial division
• Rational Functions where numerator and denominator may not be polynomials

� identify the highest power of x in the denominator
⇤ Is the power even or odd when pulled outside of the radical?
⇤ If even outside of the radical, that power of x will always be positive.
⇤ If odd out outside of the radical, that power of x depends on if x ! �1 or x ! 1.

� divide every term in the function by that highest power from the denominator
⇤ Underneath any radicals, make sure you are dividing each term by the power of x that

is appropriate for within the radical as it is outside the radical
⇤ Outside the radical, divide by the appropriate sign and power on x

� simplify each term
� take the limit of each term (recall: lim

x!±1
1
xn = 0)
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JIT 6.1, 6.2: Exponential Functions

• f(x) = bx

• If b > 1, our function is growing really fast.
• If 0 < b < 1, our function is decaying really fast
• All exponential functions (without a shift) will pass through (0, 1) since any number raised to the
zero power (except 0) is 1.

• Translations and Reflections
Let c be a positive number...

� Horizontal Shift: bx�c right shift; bx+c left shift
� Vertical Shift: bx + c upward shift; bx � c downward shift
� Reflect over x-axis: �bx

� Reflect over y-axis: b�x

• Solving Equation with Exponential Functions
� If the bases are the same, you can set the exponents equal to each other and solve

• The Natural Exponential Function
� f(x) = ex

� e = 2.71828...
� goes through (0, 1)
� slope of tangent line is 1 at x = 0

JIT 7.1: Composition of Functions

• Rather than a variable input, x, a function can take in another function as its input
• (f � g)(x) = f(g(x)) means to plug in g(x) everywhere you see an x in your function f(x).
• If f(x) = x2 + 2 and g(x) = x� 3, f(g(x)) = (x� 3)2 + 2

JIT 7.2, 7.3, 7.4: Inverse Functions

• If f(g(x)) = x and g(f(x)) = x, then f(x) and g(x) are inverses.
• We can denote the inverse of f(x) as f�1(x)
• The domain of f(x) is the range of f�1(x)
• The range of f(x) is the domain of f�1(x)
• Graphically

� Horizontal Line Test: A function passes the HLT if you drag a horizontal line down your
function and it only crosses your function at one point

� A function is one-to-one if it passes the HLT
� If a function is one-to-one, it has an inverse
� The inverse of a function is the function reflected over the line y = x
� If the point (a, b) lies on f(x), the point (b, a) lies on f�1(x).

• Algebraically
� Solve the function for x
� Swap x and y
� Replace y with inverse notation
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JIT 8.1, 8.2, 8.3, 8.4: Logarithmic Functions

• f(x) = logb(x)
• logarithmic functions and exponential functions are inverses: logb(x) is the inverse of bx

� blogb(x) = x
� logb(b

x) = x
• To evaluate what logb(number) is, ask yourself, “What power to I need to raise by base b to to get
this number on the inside?”

� ex: log9(81) = 2 because 92 = 81.
• Laws of Logs

� logb(xy) = logb(x) + logb(y)

� logb

⇣
x
y

⌘
= logb(x)� logb(y)

� logb(x
r) = r logb(x)

• When solving an equation involving logs, make sure you check that your solution is valid!
• The Natural Log Function

� f(x) = ln(x)
� log base e
� inverse of ex

⇤ eln(x) = x
⇤ ln(ex) = x

� ln(1) = 0, passes through (1, 0)
• Change of Base

� If you want to change from base b to base e: bx = ex ln(b) and logb(x) =
ln(x)
ln(b)

� If you want to change from base b to base c: bx = cx logc(b) and logb(x) =
logc(x)
logc(b)
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Ch 2.6: Continuity

• For a function to be continuous at x = a, we need

� f(a) defined
� lim

x!a
f(x) exists

� f(a) = lim
x!a

f(x)

• We have 4 types of discontinuities:

� removable

⇤ violates f(a) = lim
x!a

f(x)

⇤ You’ll have a removable discontinuity when you cancel out a factor from the numerator

and denominator

⇤ You can fix a removable discontinuity by “filling in the hole” and making f(a) = lim
x!a

f(x)

� jump

⇤ violates lim
x!a

f(x) exists (b/c lim
x!a�

f(x) 6= lim
x!a+

f(x))

� infinite

⇤ violates f(a) defined and sometimes lim
x!a

f(x) exists

� oscillating

⇤ violates f(a) defined and lim
x!a

f(x) exists

Ch 2.6: Intermediate Value Theorem

• If f is continuous on [a, b] and f(a) < L < f(b), then there is a number c within (a, b) such that

f(c) = L
• “Has there ever been a time when you were exactly three feet?”

– Yes because growth is continuous and there was a time when you were less than three feet

(f(a) < L) and a time when you were greater than three free (L < f(b)). So, there must

have been an instant (c) when you were exactly three feet (f(c) = L).
• A lot of times we use IVT to determine if something has a root/solution/crosses the x-axis.

– check function is continuous

– check there is a point, a, such that f(a) < 0

– check there is a point, b, such that 0 < f(b).
– conclude that there must be a point, c, where f(c) = 0

JIT 11.1: Slopes of Secant Lines

• secant line: goes through two points on a curve

f(x)�f(a)
x�a or

f(a+h)�f(a)
h

• Techniques to simplify:

– expansion

– common denominator

– conjugate

– canceling factors
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Ch 3.1: Derivatives at a Point

• derivative at a = slope of tangent line at a = instantaneous change at a
• If we take the limit of the slope of a secant line (push the two points together), we get the slope of

a tangent line

f 0
(a) = lim

x!a

f(x)�f(a)
x�a or f 0

(a) = lim
h!0

f(a+h)�f(a)
h

• These definitions are interchangeable and will give you the same numerical answer for the slope of

a tangent line at a point.

Ch 3.2: The Limit Definition of a Derivative

• derivative (as a function) = slope of tangent line anywhere on the curve

f 0
(x) = lim

h!0

f(x+h)�f(x)
h

• Derivative Notation: y0, f 0
(x), f 0

,
dy
dx ,

d
dx(f(x))

• If we graph the derivative function, we are simply graphing the slopes of the tangent lines to our

orginal function

function graph derivative graph

increasing positive (above x-axis)
decreasing negative (below x-axis)

smooth min/max zero (cross x-axis)
constant zero (over an interval)

linear constant

quadratic linear

• A function will not be di↵erentiable at a point (can’t find derivative) if it has the following at that

point:

� discontinuity

� sharp point (corner or cusp)

� vertical tangent (supa steeeeep)

• If a function is di↵erentiable at a, then it is continuous at a.

EQUATION OF A TANGENT LINE

• We need three things to find the equation of a line:

� slope (m)

� x-point (x1)

� y-point (y1)
• If we are finding the equation of a tangent line, the slope of the tangent line will be the derivative.

• To find the slope of the tangent line at our x1 value, we plug in x1 into the derivative.

� mtan

���
x1

= f 0
(x1)

• To find the y1 value, we plug in our x1 value into the original function

� y1 = f(x1)

• To find the slope of a normal line, first find the slope of the tangent line, then flip and negate it.

� mnorm = � 1
mtan
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Ch 3.3: Derivative Rules

• d
dx(c) = 0

• d
dx(x) = 1

• d
dx(x

n
) = nxn�1

• d
dx(cf(x)) = cf 0

(x)
• d

dx(f(x) + g(x)) = f 0
(x) + g0(x)

• d
dx(e

x
) = ex

• We can rewrite how functions look so we can use power rule:

� 1
xn = x�n

� m
p
xn = xn/m

• a function has a horizontal tangent line when f 0
(x) = 0 because the slope of a horizontal tangent

line is zero

• We can find higher order derivatives by taking the derivative of the previous derivative.

– second derivative: y00

– third derivative: y000

– fourth derivative: y(4)

– nth
derivative: y(n)

Ch 3.4: Product Rule and Quotient Rule

d
dx(f(x)g(x)) = f 0

(x)g(x) + f(x)g0(x) d
dx

⇣
f(x)
g(x)

⌘
=

g(x)f 0(x)�f(x)g0(x)
(g(x))2

• Sometimes it’s easier to simplify your function first before trying these rules.

Ch 3.5: Derivatives of Trig Functions and Special Limits

d
dx(sin x) = cos x d

dx(cos x) = � sin x

d
dx(tan x) = sec

2 x d
dx(cot x) = � csc

2 x

d
dx(sec x) = sec x tan x d

dx(csc x) = � csc x cot x

• Derivatives of sin x and cos x work in a cycle

– If you want to find the nth
derivative of something in this cycle, divide n by 4, find your

remainder, then count your remainder away from your original function

• Special limits: you need to make your coe�cient and your coe�cient within your angle match.

lim
x!0

sinx
x = 1 and lim

x!0

cosx�1
x = 0
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Ch 3.6: Applications of Derivatives

• Physics
� position: s(t) ft
� velocity: v(t) = s0(t) ft/s
� acceleration: a(t) = v0(t) = s00(t) ft/s2

� speed = |v(t)| ft/s

� To find an object’s maximum height:
1. First find when the object reaches its max height by solving where v(t) = 0.
2. Then, find the max height by plugging the time you found in Step 1 into your position

function, s(t).
� To find the velocity in which an object strikes the ground:

1. First find when an object strikes the ground by solving where s(t) = 0.
2. Then, find the velocity it strikes the ground by plugging the time you found in Step 1

into your velocity function, v(t).

� Velocity’s sign signifies direction. An object possibly changes direction when v(t) = 0
⇤ If v(t) < 0, the object is moving down or to the left
⇤ If v(t) > 0, the object is moving up or to the right

• Economics
� Cost Function: C(x) how much to produce the first x items
� Average Cost: ¯C(x) = C(x)

x the average cost to produce x items
� Marginal Cost: C 0(x) about how much it will make to produce one more item after making x
items
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JIT 12.1: Decomposition of Functions

• In a composition of functions, we have an outer and an inner function: f(g(x))
� outer: f(x)
� inner: g(x)

• We can also have a composition of three functions: f(g(h(x)))
� outer: f(x)
� inner: g(x)
� most inner: h(x)

Ch 3.7: Chain Rule

• Chain Rule tells us how to take the derivative of a composition of functions
� d

dx(f(g(x))) = f 0(g(x)) · g0(x)

• Version 1
1. First, identify your outer and inner functions.
2. Call your inner function u and let your outer function be a function of u.

� outer: y = f(u)
� inner: u = g(x)

3. Take the derivative of your outer and inner functions
� outer derivative: dy

du = f 0(u)
� inner derivative: du

dx = g0(x)
4. Multiply the derivatives together

� dy
dx = dy

du · du
dx = f 0(u) · g0(x)

5. Replace any us with u = g(x) so that your final answer is only in terms of x.
� dy

dx = f 0(g(x)) · g0(x)

• Version 2
1. First, identify your outer and inner functions.
2. Take the derivative of your first, leaving your inside function unchanged.

� f 0(g(x))
3. Multiply by the derivative of the inside function

� f 0(g(x)) · g0(x)

• You can use Chain Rule as many times as needed to ensure you take the derivative of your entire
composition of functions.
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