- Adding and Subtracting Fractions
- You have to get a common denominator before adding/subtracting fractions
- Multiplying Fractions
- multiply numerators straight across
- multiply denominators straight across
- Dividing Fractions
- Reciprocate (flip) bottom fraction and multiply
- Parenthesis
- when a value or a negative sign is in front of a parenthesis, that value distributes to everything inside parenthesis

JIT 1.4, 1.5, 1.8

- Rules for exponents:

$a^{-n}=1 / a^{n} ; a \neq 0$	A negative exponent belongs on the other side of the fraction
$a^{0}=1 ; a \neq 0$	Anything raised to the 0 power is 1
$a^{x} \cdot a^{y}=a^{x+y}$	Multiplying with the same base \rightarrow add exponents
$a^{x} / a^{y}=a^{x-y}$	Dividing with same base \rightarrow subtract exponents
$\left(a^{x}\right)^{y}=a^{x y}$	exponent raised to an exponent \rightarrow multiply exponents
$a^{x} \cdot b^{x}=(a b)^{x}$	exponent can "distribute" when multiplying with different bases and same exponent
$a^{x} / b^{x}=(a / b)^{x}$	exponent can "distribute" when dividing with different bases and same expo- nent

- Roots
- $\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}=x^{m / n}$
- Intervals, Number lines, and Inequalities

Interval	Number line	Inequality
(or)	open circle	$<$ or $>$
[or]	closed circle	\leq or \geq

- Set Notation
- Union (\cup) : combination of both sets
- Intersection (\cap): overlap between two sets
- a function should pass the vertical line test

parent	domain	range
$y=x$	$(-\infty, \infty)$	$(-\infty, \infty)$
$y=\|x\|$	$(-\infty, \infty)$	$[0, \infty)$
$y=x^{2}$	$(-\infty, \infty)$	$[0, \infty)$
$y=x^{3}$	$(-\infty, \infty)$	$(-\infty, \infty)$
$y=e^{x}$	$(-\infty, \infty)$	$(0, \infty)$
$y=\ln (x)$	$(0, \infty)$	$(-\infty, \infty)$
$y=1 / x$	$(-\infty, 0) \cup(0, \infty)$	$(-\infty, 0) \cup(0, \infty)$
$y=1 / x^{2}$	$(-\infty, 0) \cup(0, \infty)$	$(0, \infty)$
$y=\sqrt{x}$	$[0, \infty)$	$[0, \infty)$
$y=\sqrt[3]{x}$	$(-\infty, \infty)$	$(-\infty, \infty)$

- Equation of a line
- slope: $m=\frac{r_{\text {rse }}}{r u n}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
- perpendicular slope: $m_{\perp}=-\frac{1}{m}$
- point-slope formula: $y-y_{1}=m\left(x-x_{1}\right)$
- Piecewise Functions
- $f(x)= \begin{cases}\text { function } 1 & \text { how much you show } \\ \text { function } 2 & \text { how much you show }\end{cases}$

JIT 4.3, 4.4, 4.5, 4.6

- ODD Functions:
- symmetric about origin
- $f(-x)=-f(x)$
- EVEN Functions:
- symmetric over y-axis
- $f(-x)=f(x)$
- Vertical Shifts
- UP: add number to outside of function; i.e. $y=x+2$
- DOWN: subtract number to outside of function; i.e. $y=x-2$
- Horizontal Shifts
- LEFT: subtract a negative number (see positive) inside function; i.e. $y=(x+2)$
- RIGHT: subtract a positive number (see negative) inside function; i.e. $y=(x-2)$
- Reflections
- reflect over x-axis: $-f(x)$
- reflect over y-axis: $f(-x)$

JIT 4.7

- Solving a system of equations by GRAPHING:
- intersection is solution
- if lines are parallel \rightarrow no solution
- if lines are the same \rightarrow infinite solutions
- Solving a system of equations by SUBSTITUTION:

1. Choose one equation and solve it for one variable
2. Insert what you found from Step 1 into the other equation and solve for the single variable
3. Make sure you have solved for both variables

JIT 5.1, 5.2, 5.3, 5.5

- Radians \rightarrow Degrees: multiply by $\frac{180}{\pi}$
- Degrees \rightarrow Radians: multiply by $\frac{\pi}{180}$
- know unit circle
- know graphs for trig functions

$\sin (x)$	$\csc (x)=\frac{1}{\sin (x)}$
$\cos (x)$	$\sec (x)=\frac{1}{\cos (x)}$
$\tan (x)$	$\cot (x)=\frac{1}{\tan (x)}$

- 2π period: sin, cos, csc, sec
- π period: tan, cot
- Given the value of one trig function, you can find the others using:
- SOHCAHTOA
- which quadrant the triangle lies in
- Pythagorean Theorem

JIT 5.4

- $y=A \sin (B(\theta-C))+D$
- A: amplitude
- B: period; divide normal period by B
- C: horizontal shift
- D: vertical shift
- Pythagorean Identities (memorize):
- $\cos ^{2} \theta+\sin ^{2} \theta=1$
- $1+\tan ^{2} \theta=\sec ^{2} \theta$
- $\cot ^{2} \theta+1=\csc ^{2} \theta$
- Addition/Subtraction Formulas (don't have to memorize):

○ $\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$

- $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$
- $\sin (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y)$
- $\cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)$
- Double-Angle Formulas (memorize, but we don't use a lot):
- $\sin (2 x)=2 \sin (x) \cos (x)$
- $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)$ or $=2 \cos ^{2}(x)-1$ or $=1-2 \sin ^{2}(x)$
- Half-Angle Formulas (memorize, but we don't use a lot):
- $\cos ^{2}(x)=\frac{1+\cos (2 x)}{2}$
- $\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}$
- Solving Equation with Trig
- get as close to angle as you can, then ask yourself, "Where does this happen on the unit circle?"

JIT 10.1, 10.2, 10.3, 10.4

- Find a common factor within all terms and take it out of each term
- Special Formulas for Factoring Quickly

○ $x^{2}-y^{2}=(x+y)(x-y)$

- $(x+y)^{2}=x^{2}+2 x y+y^{2}$
- $(x-y)^{2}=x^{2}-2 x y+y^{2}$
- $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
- $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
- Standard Factoring
- ask, "What multiplies to get my last number and adds to get my middle number?"
- Factoring by Grouping
- group terms with common factors
- remove the greatest common factor from each group
- you should have the same factor in each group and then what is leftover from each group is is your other factor
- Roots and Factors
- r is a root when $f(r)=0$
$\circ r$ is a root $\Longleftrightarrow x-r$ is a factor
- if you already know one factor, you can use long polynomial division to find your other factors
- Completing the Square
- factor out the number in front of $x^{2}(a)$
- take the coefficient on x, divide it by 2 , and square it
- this will be what you need to add and subtract
- complete the square
- factor a back in
- Rationalizing with Conjugates
- CONJUGATE: change the sign in the middle of two terms where one involves a square root
- multiply the top and bottom of rational function by the conjugate
- Pulling things out from Radicals
- split the stuff under the radical into factors you can pull out from under the root
- when you have an EVEN root $(\sqrt{ }, \sqrt[4]{ }, \sqrt[6]{ }, \ldots)$, if you pull out something with an odd exponent it needs absolute values around it
- when you have an ODD root $(\sqrt[3]{ }, \sqrt[5]{ }, \sqrt[7]{ }, \ldots)$, you don't have to worry about absolute values

JIT 3.1, 3.2, 3.3

- Techniques for Solving Equations
- isolate your variable by moving all terms with your variable to one side and terms without to the other side
- You can solve a quadratic equation by factoring, quadratic formula, or completing the square
* quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- Cross multiplication can get rid of fractions on both sides of your equal sign
* be sure to check your answer back in the original equation for 0 s in the denominator
- common denominators can help you get rid of fractions and allow you to just solve with the numerators
* be sure to check your answer back in the original equation for 0 s in the denominator
- Rational Functions: $y=\frac{p(x)}{q(x)}$
- Find domain: anything that doesn't belong in domain will be when $q(x)=0$
- Find roots: we will cross the x-axis when $p(x)=0$
- Find y-intercepts: plug in 0 into entire function; $; \frac{p(0)}{q(0)}$

Ch 2.1: The Idea of Limits

- secant lines: connect two points on a curve
- slope: $m_{\text {sec }}=\frac{s(b)-s(a)}{b-a}$
- average velocity
- tangent lines: touch the curve at a single point
- slope: we can conjecture the slope of a tangent line by bringing the points of a secant line closer and closer together
- instantaneous velocity

Ch 2.2: Finding Limits Graphically

- NOTATION: $\lim _{x \rightarrow a} f(x)=L$
- Limits tell us what our functions appears to be approaching as x closes in around a. (aka: limits don't care about holes!)
- one-sided limits:
- right-sided limits approach a from the right: $\lim _{x \rightarrow a^{+}} f(x)=L$
- left-sided limits approach a from the left: $\lim _{x \rightarrow a^{-}} f(x)=L$
- If $\lim _{x \rightarrow a^{+}} f(x)=L$ and $\lim _{x \rightarrow a^{-}} f(x)=L$, then $\lim _{x \rightarrow a} f(x)=L$
- If $\lim _{x \rightarrow a^{+}} f(x)=L$ and $\lim _{x \rightarrow a^{-}} f(x)=M$, then $\lim _{x \rightarrow a} f(x)$ DNE

Ch 2.3: Finding Limits Algebraically

- Limit Laws:

- $\lim _{x \rightarrow a}(f(x) \pm g(x))=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a}(c f(x))=c \lim _{x \rightarrow a} f(x)$
- $\lim _{x \rightarrow a}(f(x) g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}\left(\right.$ if $\left.\lim _{x \rightarrow a} g(x) \neq 0\right)$
- $\lim _{x \rightarrow a}(f(x))^{n}=\left(\lim _{x \rightarrow a} f(x)\right)^{n}$
- $\lim _{x \rightarrow a}(f(x))^{1 / n}=\left(\lim _{x \rightarrow a} f(x)\right)^{1 / n}$
- $\lim _{x \rightarrow a} c=c$

Ch 2.3: Finding Limit Algebraically Continued

- Direct Substitution:

- always try direct substitution first when calculating a limit!
\circ plug in a into the function. If the result is a number, this is the answer to your limit.
- $\lim _{x \rightarrow 2}\left(x^{2}-1\right)=2^{2}-1=4-1=3$
- Direct Sub Yields $\frac{0}{0}$
- factor
- multiply by the conjugate
- find a common denominator
- expand any powers
- replace an absolute value with the appropriate part of the piecewise function
- Squeeze Theorem
- If $f(x) \leq g(x) \leq h(x)$ for all x near a and $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} h(x)=L$, then $\lim _{x \rightarrow a} g(x)=L$.
- start with inequality, take limit of each function, evaluate outer limits.
- If the outer limits match, the limit of the inner function is also the same number. If not, Squeeze Theorem is inconclusive.

Ch 2.4: Infinite Limits

- $\lim _{x \rightarrow a} f(x)= \pm \infty$
- Direct Sub Yields $\frac{\text { number }}{0}$
- Your answer will be $-\infty$ or ∞
- Simply (factor) the function as much as possible
- Look at the factor in the denominator that is giving you 0
- Determine if this factor is approaching a small + or a small - number as x approaches a
$\circ \frac{ \pm}{+}=+, \overline{=}=+, \overline{+}=-, \pm=-$

- Vertical Asymptotes

○ $x=a$

- Solve your denominator equal to 0
- verify that $x=a$ is a vertical asymptote by seeing if

$$
\lim _{x \rightarrow a^{-}} f(x)= \pm \infty \text { OR } \lim _{x \rightarrow a^{+}} f(x)= \pm \infty \text { OR } \lim _{x \rightarrow a} f(x)= \pm \infty
$$

- $\lim _{x \rightarrow \pm \infty} f(x)=L$
- tell us the end behavior of a function
- Horizontal Asymptotes
- If $\lim _{x \rightarrow \pm \infty} f(x)$ is a number L, then $y=L$ is a horizontal asymptote.
- Note that we can have infinite limits at infinity: $\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty$
- Polynomials
- $\lim _{x \rightarrow \pm \infty} x^{n}=\infty$ when n is even
- $\lim _{x \rightarrow \infty} x^{n}=\infty$ and $\lim _{x \rightarrow-\infty} x^{n}=-\infty$ when n is odd
- $\lim _{x \rightarrow \pm \infty} p(x)=\lim _{x \rightarrow \pm} a \cdot x^{n}= \pm \infty$ depending on the degree of x^{n} (even or odd) and the sign of a
- $\lim _{x \rightarrow \pm \infty} x^{-n}=\lim _{x \rightarrow \pm \infty} \frac{1}{x^{n}}=0$

- Rational Functions where numerator and denominator are polynomials

- identify the highest power of x in the denominator
- divide every term in the function by that highest power from the denominator
- simplify each term
- take the limit of each term (recall: $\lim _{x \rightarrow \pm \infty} \frac{1}{x^{n}}=0$)
- If the degree of the top polynomial is less than the degree of the bottom polynomial, $y=0$ is a horizontal asymptote
- If the degrees are the same, the horizontal asymptote is the fraction of the leading coefficients
- If the degree of the top polynomial is greater than the degree of the bottom polynomial, there are no horizontal asymptotes
- If the degree of the top polynomial is exactly one more than the degree of the bottom polynomial, there are no horizontal asymptotes, but there is a slant asymptote
\square Find the equation of a slant asymptote by long polynomial division
- Rational Functions where numerator and denominator may not be polynomials
- identify the highest power of x in the denominator Is the power even or odd when pulled outside of the radical?If even outside of the radical, that power of x will always be positive.
If odd out outside of the radical, that power of x depends on if $x \rightarrow-\infty$ or $x \rightarrow \infty$.
- divide every term in the function by that highest power from the denominator
\square Underneath any radicals, make sure you are dividing each term by the power of x that is appropriate for within the radical as it is outside the radicalOutside the radical, divide by the appropriate sign and power on x
- simplify each term
- take the limit of each term (recall: $\lim _{x \rightarrow \pm \infty} \frac{1}{x^{n}}=0$)
- $f(x)=b^{x}$
- If $b>1$, our function is growing really fast.
- If $0<b<1$, our function is decaying really fast
- All exponential functions (without a shift) will pass through $(0,1)$ since any number raised to the zero power (except 0) is 1 .
- Translations and Reflections

Let c be a positive number...

- Horizontal Shift: b^{x-c} right shift; b^{x+c} left shift
- Vertical Shift: $b^{x}+c$ upward shift; $b^{x}-c$ downward shift
- Reflect over x-axis: $-b^{x}$
- Reflect over y-axis: b^{-x}
- Solving Equation with Exponential Functions
- If the bases are the same, you can set the exponents equal to each other and solve
- The Natural Exponential Function
- $f(x)=e^{x}$
- $e=2.71828 \ldots$
- goes through $(0,1)$
- slope of tangent line is 1 at $x=0$

JIT 7.1: Composition of Functions

- Rather than a variable input, x, a function can take in another function as its input
- $(f \circ g)(x)=f(g(x))$ means to plug in $g(x)$ everywhere you see an x in your function $f(x)$.
- If $f(x)=x^{2}+2$ and $g(x)=x-3, f(g(x))=(x-3)^{2}+2$

JIT 7.2, 7.3, 7.4: Inverse Functions

- If $f(g(x))=x$ and $g(f(x))=x$, then $f(x)$ and $g(x)$ are inverses.
- We can denote the inverse of $f(x)$ as $f^{-1}(x)$
- The domain of $f(x)$ is the range of $f^{-1}(x)$
- The range of $f(x)$ is the domain of $f^{-1}(x)$
- Graphically
- Horizontal Line Test: A function passes the HLT if you drag a horizontal line down your function and it only crosses your function at one point
- A function is one-to-one if it passes the HLT
- If a function is one-to-one, it has an inverse
- The inverse of a function is the function reflected over the line $y=x$
- If the point (a, b) lies on $f(x)$, the point (b, a) lies on $f^{-1}(x)$.
- Algebraically
- Solve the function for x
- Swap x and y
- Replace y with inverse notation

JIT 8.1, 8.2, 8.3, 8.4: Logarithmic Functions

- $f(x)=\log _{b}(x)$
- logarithmic functions and exponential functions are inverses: $\log _{b}(x)$ is the inverse of b^{x}
- $b^{\log _{b}(x)}=x$
- $\log _{b}\left(b^{x}\right)=x$
- To evaluate what $\log _{b}$ (number) is, ask yourself, "What power to I need to raise by base b to to get this number on the inside?"
- ex: $\log _{9}(81)=2$ because $9^{2}=81$.
- Laws of Logs
- $\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$
- $\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)$
- $\log _{b}\left(x^{r}\right)=r \log _{b}(x)$
- When solving an equation involving logs, make sure you check that your solution is valid!
- The Natural Log Function
- $f(x)=\ln (x)$
- \log base e
- inverse of $e^{x}$$e^{\ln (x)}=x$$\ln \left(e^{x}\right)=x$
- $\ln (1)=0$, passes through $(1,0)$
- Change of Base
- If you want to change from base b to base $e: b^{x}=e^{x \ln (b)}$ and $\log _{b}(x)=\frac{\ln (x)}{\ln (b)}$
- If you want to change from base b to base $c: b^{x}=c^{x \log _{c}(b)}$ and $\log _{b}(x)=\frac{\log _{c}(x)}{\log _{c}(b)}$

Ch 2.6: Continuity

- For a function to be continuous at $x=a$, we need
- $f(a)$ defined
- $\lim _{x \rightarrow a} f(x)$ exists
- $f(a)=\lim _{x \rightarrow a} f(x)$
- We have 4 types of discontinuities:
- removable
* violates $f(a)=\lim _{x \rightarrow a} f(x)$
* You'll have a removable discontinuity when you cancel out a factor from the numerator and denominator
* You can fix a removable discontinuity by "filling in the hole" and making $f(a)=\lim _{x \rightarrow a} f(x)$
- jump
* violates $\lim _{x \rightarrow a} f(x)$ exists ($\mathrm{b} / \mathrm{c} \lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$)
- infinite
* violates $f(a)$ defined and sometimes $\lim _{x \rightarrow a} f(x)$ exists
- oscillating
* violates $f(a)$ defined and $\lim _{x \rightarrow a} f(x)$ exists

Ch 2.6: Intermediate Value Theorem

- If f is continuous on $[a, b]$ and $f(a)<L<f(b)$, then there is a number c within (a, b) such that $f(c)=L$
- "Has there ever been a time when you were exactly three feet?"
- Yes because growth is continuous and there was a time when you were less than three feet $(f(a)<L)$ and a time when you were greater than three free $(L<f(b))$. So, there must have been an instant (c) when you were exactly three feet $(f(c)=L)$.
- A lot of times we use IVT to determine if something has a root/solution/crosses the x-axis.
- check function is continuous
- check there is a point, a, such that $f(a)<0$
- check there is a point, b, such that $0<f(b)$.
- conclude that there must be a point, c, where $f(c)=0$

JIT 11.1: Slopes of Secant Lines

- secant line: goes through two points on a curve

$$
\frac{f(x)-f(a)}{x-a} \quad \text { or } \quad \frac{f(a+h)-f(a)}{h}
$$

- Techniques to simplify:
- expansion
- common denominator
- conjugate
- canceling factors

Ch 3.1: Derivatives at a Point

- derivative at $a=$ slope of tangent line at $a=$ instantaneous change at a
- If we take the limit of the slope of a secant line (push the two points together), we get the slope of a tangent line

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad \text { or } \quad f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

- These definitions are interchangeable and will give you the same numerical answer for the slope of a tangent line at a point.

Ch 3.2: The Limit Definition of a Derivative

- derivative (as a function) = slope of tangent line anywhere on the curve

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- Derivative Notation: $y^{\prime}, f^{\prime}(x), f^{\prime}, \frac{d y}{d x}, \frac{d}{d x}(f(x))$
- If we graph the derivative function, we are simply graphing the slopes of the tangent lines to our orginal function

function graph	derivative graph
increasing	positive (above x-axis)
decreasing	negative (below x-axis)
smooth min/max	zero (cross x-axis)
constant	zero (over an interval)
linear	constant
quadratic	linear

- A function will not be differentiable at a point (can't find derivative) if it has the following at that point:
- discontinuity
- sharp point (corner or cusp)
- vertical tangent (supa steeeeep)
- If a function is differentiable at a, then it is continuous at a.

EQUATION OF A TANGENT LINE

- We need three things to find the equation of a line:
\circ slope (m)
- x-point (x_{1})
- y-point (y_{1})
- If we are finding the equation of a tangent line, the slope of the tangent line will be the derivative.
- To find the slope of the tangent line at our x_{1} value, we plug in x_{1} into the derivative.
- $\left.m_{t a n}\right|_{x_{1}}=f^{\prime}\left(x_{1}\right)$
- To find the $\underline{y_{1} \text { value, we plug in our } x_{1} \text { value into the original function }}$
- $y_{1}=f\left(x_{1}\right)$
- To find the slope of a normal line, first find the slope of the tangent line, then flip and negate it.
- $m_{\text {norm }}=-\frac{1}{m_{t a n}}$
- $\frac{d}{d x}(c)=0$
- $\frac{d}{d x}(x)=1$
- $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
- We can rewrite how functions look so we can use power rule:
- $\frac{1}{x^{n}}=x^{-n}$
- $\sqrt[m]{x^{n}}=x^{n / m}$
- a function has a horizontal tangent line when $\underline{f^{\prime}(x)=0}$ because the slope of a horizontal tangent line is zero
- We can find higher order derivatives by taking the derivative of the previous derivative.
- second derivative: $y^{\prime \prime}$
- third derivative: $y^{\prime \prime \prime}$
- fourth derivative: $y^{(4)}$
$-n^{\text {th }}$ derivative: $y^{(n)}$
Ch 3.4: Product Rule and Quotient Rule

$$
\frac{d}{d x}(f(x) g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \quad \frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
$$

- Sometimes it's easier to simplify your function first before trying these rules.

Ch 3.5: Derivatives of Trig Functions and Special Limits

$$
\begin{aligned}
\frac{d}{d x}(\sin x)=\cos x & \frac{d}{d x}(\cos x)=-\sin x \\
\frac{d}{d x}(\tan x)=\sec ^{2} x & \frac{d}{d x}(\cot x)=-\csc ^{2} x \\
\frac{d}{d x}(\sec x)=\sec x \tan x & \frac{d}{d x}(\csc x)=-\csc x \cot x
\end{aligned}
$$

- Derivatives of $\sin x$ and $\cos x$ work in a cycle
- If you want to find the $n^{\text {th }}$ derivative of something in this cycle, divide n by 4 , find your remainder, then count your remainder away from your original function

- Special limits: you need to make your coefficient and your coefficient within your angle match.

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0
$$

Ch 3.6: Applications of Derivatives

- Physics
${ }_{\frac{1}{*}}^{4}\left({ }^{\circ}\right.$ position: $s(t) \mathrm{ft}$
velocity: $v(t)=s^{\prime}(t) \mathrm{ft} / \mathrm{s}$
${ }_{\frac{1}{4}}^{\frac{1}{2}} 0$ acceleration: $a(t)=v^{\prime}(t)=s^{\prime \prime}(t) \mathrm{ft} / \mathrm{s}^{2}$
- speed $=|v(t)| \mathrm{ft} / \mathrm{s}$
- To find an object's maximum height:

1. First find when the object reaches its max height by solving where $v(t)=0$.
2. Then, find the max height by plugging the time you found in Step 1 into your position function, $s(t)$.

- To find the velocity in which an object strikes the ground:

1. First find when an object strikes the ground by solving where $s(t)=0$.
2. Then, find the velocity it strikes the ground by plugging the time you found in Step 1 into your velocity function, $v(t)$.

- Velocity's sign signifies direction. An object possibly changes direction when $v(t)=0$
* If $v(t)<0$, the object is moving down or to the left
* If $v(t)>0$, the object is moving up or to the right
- Economics
- Cost Function: $C(x)$ how much to produce the first x items
- Average Cost: $C \overline{(x)}=\frac{C(x)}{x}$ the average cost to produce x items
- Marginal Cost: $C^{\prime}(x)$ about how much it will make to produce one more item after making x items

JIT 12.1: Decomposition of Functions

- In a composition of functions, we have an outer and an inner function: $f(g(x))$
- outer: $f(x)$
- inner: $g(x)$
- We can also have a composition of three functions: $f(g(h(x)))$
- outer: $f(x)$
- inner: $g(x)$
- most inner: $h(x)$

Ch 3.7: Chain Rule

- Chain Rule tells us how to take the derivative of a composition of functions
- $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
- Version 1

1. First, identify your outer and inner functions.
2. Call your inner function u and let your outer function be a function of u.

- outer: $y=f(u)$
- inner: $u=g(x)$

3. Take the derivative of your outer and inner functions

- outer derivative: $\frac{d y}{d u}=f^{\prime}(u)$
- inner derivative: $\frac{d u}{d x}=g^{\prime}(x)$

4. Multiply the derivatives together

○ $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=f^{\prime}(u) \cdot g^{\prime}(x)$
5. Replace any u s with $u=g(x)$ so that your final answer is only in terms of x.

- $\frac{d y}{d x}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
- Version 2

1. First, identify your outer and inner functions.
2. Take the derivative of your first, leaving your inside function unchanged. - $f^{\prime}(g(x))$
3. Multiply by the derivative of the inside function

- $f^{\prime}(g(x)) \cdot g^{\prime}(x)$
- You can use Chain Rule as many times as needed to ensure you take the derivative of your entire composition of functions.

