JIT 1.1, 1.2, 1.3

- Adding and Subtracting Fractions
 - \circ You have to get a common denominator before adding/subtracting fractions
- Multiplying Fractions
 - multiply numerators straight across
 - \circ multiply denominators straight across
- Dividing Fractions
 - \circ Reciprocate (flip) bottom fraction and multiply
- Parenthesis
 - $\circ\,$ when a value or a negative sign is in front of a parenthesis, that value distributes to everything inside parenthesis

JIT 1.4, 1.5, 1.8

• Rules for exponents:

$a^{-n} = \frac{1}{a^n}; a \neq 0$	A negative exponent belongs on the other side of the fraction
$a^0 = 1; a \neq 0$	Anything raised to the 0 power is 1
$a^x \cdot a^y = a^{x+y}$	Multiplying with the same base \rightarrow add exponents
$a^x/a^y = a^{x-y}$	Dividing with same base \rightarrow subtract exponents
$(a^x)^y = a^{xy}$	exponent raised to an exponent \rightarrow multiply exponents
$a^x \cdot b^x = (ab)^x$	exponent can "distribute" when multiplying with different bases and same
	exponent
$a^x/b^x = (a/b)^x$	exponent can "distribute" when dividing with different bases and same expo-
	nent

• Roots

 $\circ \sqrt[n]{x^m} = (\sqrt[n]{x})^m = x^{m/n}$

• Intervals, Number lines, and Inequalities

Interval	Number line	Inequality
(or)	open circle	< or >
[or]	closed circle	\leq or \geq

• Set Notation

- Union (\cup): combination of both sets
- \circ Intersection (): overlap between two sets

JIT 4.1, 4.2

• a function should pass the vertical line test

parent	domain	range
y = x	$(-\infty,\infty)$	$(-\infty,\infty)$
y = x	$(-\infty,\infty)$	$[0,\infty)$
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
$y = x^3$	$(-\infty,\infty)$	$(-\infty,\infty)$
$y = e^x$	$(-\infty,\infty)$	$(0,\infty)$
$y = \ln(x)$	$(0,\infty)$	$(-\infty,\infty)$
y = 1/x	$(-\infty,0)\cup(0,\infty)$	$(-\infty,0)\cup(0,\infty)$
$y = 1/x^2$	$(-\infty,0)\cup(0,\infty)$	$(0,\infty)$
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt[3]{x}$	$(-\infty,\infty)$	$(-\infty,\infty)$

• Equation of a line

- <u>slope:</u> $m = \frac{rise}{run} = \frac{y_2 y_1}{x_2 x_1}$ <u>perpendicular slope</u>: $m_{\perp} = -\frac{1}{m}$
- m• point-slope formula: $y - y_1 = m(x - x_1)$
- Piecewise Functions

$\circ f(x) = d$	function 1	how much you show how much you show
$\circ f(x) = $	function 2	how much you show

JIT 4.3, 4.4, 4.5, 4.6

• ODD Functions:

• symmetric about origin

 $\circ f(-x) = -f(x)$

• EVEN Functions:

 \circ symmetric over <u>y</u>-axis

- $\circ f(-x) = f(x)$
- Vertical Shifts
 - UP: add number to outside of function; i.e. y = x + 2
 - DOWN: subtract number to outside of function; i.e. y = x 2
- Horizontal Shifts
 - LEFT: subtract a negative number (see positive) inside function; i.e. y = (x + 2)
 - RIGHT: subtract a positive number (see negative) inside function; i.e. y = (x 2)
- Reflections
 - \circ reflect over x-axis: -f(x)
 - reflect over y-axis: f(-x)

JIT 4.7

- Solving a system of equations by GRAPHING:
 - \circ intersection is solution
 - \circ if lines are <u>parallel</u> \rightarrow <u>no solution</u>
 - \circ if lines are the <u>same</u> \rightarrow <u>infinite solutions</u>
- Solving a system of equations by SUBSTITUTION:
 - 1. Choose one equation and solve it for one variable
 - 2. Insert what you found from Step 1 into the other equation and solve for the single variable
 - 3. Make sure you have solved for both variables

JIT 5.1, 5.2, 5.3, 5.5

- Radians \rightarrow Degrees: multiply by $\frac{180}{\pi}$
- Degrees \rightarrow Radians: multiply by $\frac{\pi}{180}$
- know <u>unit circle</u>
- know graphs for trig functions

$\sin(x)$	$\csc(x) = \frac{1}{\sin(x)}$
$\cos(x)$	$\sec(x) = \frac{1}{\cos(x)}$
$\tan(x)$	$\cot(x) = \frac{1}{\tan(x)}$

- 2π period: sin, cos, csc, sec
- π period: tan, cot
- Given the value of one trig function, you can find the others using:
 - \circ SOHCAHTOA
 - \circ which quadrant the triangle lies in
 - Pythagorean Theorem

JIT 5.4

- $y = \mathbf{A}\sin(\mathbf{B}(\theta \mathbf{C})) + \mathbf{D}$
 - \circ A: amplitude
 - \circ \blacksquare : period; divide normal period by B
 - \circ **C**: horizontal shift
 - $\circ \mathbb{D}$: vertical shift

Solving Equation with Trig
get as close to angle as you can, then ask yourself, "Where does this happen on the unit circle?"

JIT 10.1, 10.2, 10.3, 10.4

- Find a <u>common factor</u> within all terms and take it out of each term
- Special Formulas for Factoring Quickly

 $\circ x^{2} - y^{2} = (x + y)(x - y)$ $\circ (x + y)^{2} = x^{2} + 2xy + y^{2}$ $\circ (x - y)^{2} = x^{2} - 2xy + y^{2}$ $\circ x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$ $\circ x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$

• Standard Factoring

• ask, "What multiplies to get my last number and adds to get my middle number?"

- Factoring by Grouping
 - $\circ\,$ group terms with common factors
 - $\circ\,$ remove the greatest common factor from each group
 - $\circ\,$ you should have the same factor in each group and then what is leftover from each group is is your other factor
- <u>Roots and Factors</u>
 - $\circ r$ is a <u>root</u> when f(r) = 0
 - \circ *r* is a root $\iff x r$ is a factor

 \circ if you already know one factor, you can use <u>long polynomial division</u> to find your other factors

- Completing the Square
 - factor out the number in front of $x^2(a)$
 - \circ take the <u>coefficient on x</u>, divide it by 2, and square it
 - \circ this will be what you need to add and subtract
 - \circ complete the square
 - $\circ\,$ factor $a\,$ back in

JIT 10.5, 10.6

- Rationalizing with Conjugates
 - CONJUGATE: change the sign in the middle of two terms where one involves a square root • multiply the top and bottom of rational function by the conjugate
- Pulling things out from Radicals
 - \circ split the stuff under the radical into factors you can pull out from under the root
 - \circ when you have an <u>EVEN</u> root ($\sqrt{2}, \sqrt[4]{2}, \sqrt[6]{2}, \ldots$), if you pull out something with an odd exponent it needs absolute values around it
 - \circ when you have an <u>ODD</u> root ($\sqrt[3]{}, \sqrt[5]{}, \sqrt[7]{}, \ldots$), you don't have to worry about absolute values

JIT 3.1, 3.2, 3.3

- Techniques for Solving Equations
 - **isolate vour variable** by moving all terms with your variable to one side and terms without to the other side
 - You can solve a quadratic equation by factoring, quadratic formula, or completing the square
 - * quadratic formula: $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ **Cross multiplication** can get rid of fractions on both sides of your equal sign
 - * be sure to check your answer back in the original equation for 0s in the denominator • common denominators can help you get rid of fractions and allow you to just solve with
 - the numerators

* be sure to check your answer back in the original equation for 0s in the denominator • Rational Functions: $y = \frac{p(x)}{q(x)}$

- Find domain: anything that doesn't belong in domain will be when q(x) = 0
- Find roots: we will cross the x-axis when p(x) = 0
- Find y-intercepts: plug in 0 into entire function; $\frac{p(0)}{\sigma(0)}$

Ch 2.1: The Idea of Limits

- secant lines: connect two points on a curve
 - \circ slope: $m_{\rm sec} = \frac{s(b) s(a)}{b a}$
 - average velocity
- tangent lines: touch the curve at a single point
 - \circ slope: we can conjecture the slope of a tangent line by bringing the points of a secant line closer and closer together
 - instantaneous velocity

Ch 2.2: Finding Limits Graphically

- NOTATION: $\lim_{x \to a} f(x) = L$
- Limits tell us what our functions appears to be *approaching* as x closes in around a. (aka: limits don't care about holes!)
- one-sided limits:
 - \circ right-sided limits approach a from the right: lim f(x) = L
 - $x \rightarrow a^{-}$ • left-sided limits approach a from the left: $\lim_{x \to a} f(x) = L$

 - If $\lim_{x \to a^+} f(x) = L$ and $\lim_{x \to a^-} f(x) = L$, then $\lim_{x \to a} f(x) = L$ If $\lim_{x \to a^+} f(x) = L$ and $\lim_{x \to a^-} f(x) = M$, then $\lim_{x \to a} f(x)$ DNE

Ch 2.3: Finding Limits Algebraically

$$\begin{array}{l} \textbf{Limit Laws:}\\ \circ & \lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) \\ \circ & \lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x) \\ \circ & \lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) \\ \circ & \lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ (if } \lim_{x \to a} g(x) \neq 0) \\ \circ & \lim_{x \to a} (f(x))^n = \left(\lim_{x \to a} f(x) \right)^n \\ \circ & \lim_{x \to a} (f(x))^{1/n} = \left(\lim_{x \to a} f(x) \right)^{1/n} \\ \circ & \lim_{x \to a} c = c \end{array}$$

Ch 2.3: Finding Limit Algebraically Continued

• <u>Direct Substitution</u>:

- \circ <u>always</u> try direct substitution first when calculating a limit!
- \circ plug in *a* into the function. If the result is a number, this is the answer to your limit.
- $\circ \lim_{x \to \infty} (x^2 1) = 2^2 1 = 4 1 = 3$
- Direct Sub Yields $\frac{0}{0}$
 - \circ factor
 - $\circ\,$ multiply by the conjugate
 - $\circ\,$ find a common denominator
 - \circ expand any powers
 - $\circ\,$ replace an absolute value with the appropriate part of the piecewise function

• Squeeze Theorem

- If $f(x) \le g(x) \le h(x)$ for all x near a and $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x) = L$.
- start with inequality, take limit of each function, evaluate outer limits.
- \circ If the outer limits match, the limit of the inner function is also the same number. If not, Squeeze Theorem is inconclusive.

Ch 2.4: Infinite Limits

- $\lim f(x) = \pm \infty$
- Direct Sub Yields number
 - Your answer will be $-\infty$ or ∞
 - Simply (factor) the function as much as possible
 - \circ Look at the factor in the denominator that is giving you 0
 - \circ Determine if this factor is approaching a small + or a small number as x approaches a
 - $\circ \frac{\pm}{+} = +, \frac{-}{-} = +, \frac{-}{+} = -, \frac{\pm}{-} = -$
- <u>Vertical Asymptotes</u>
 - $\circ x = a$
 - $\circ\,$ Solve your denominator equal to 0
 - \circ verify that x = a is a vertical asymptote by seeing if
 - $\lim_{x \to a^{-}} f(x) = \pm \infty \text{ OR } \lim_{x \to a^{+}} f(x) = \pm \infty \text{ OR } \lim_{x \to a} f(x) = \pm \infty$

Ch 2.5: Limits at Infinity

- $\lim_{x \to \pm \infty} f(x) = L$
- tell us the <u>end behavior</u> of a function
- Horizontal Asymptotes
 - If $\lim_{x \to \pm \infty} f(x)$ is a number L, then y = L is a horizontal asymptote.
- Note that we can have infinite limits at infinity: $\lim_{x \to +\infty} f(x) = \pm \infty$
- Polynomials
 - $\circ \lim_{n \to \infty} x^n = \infty$ when <u>*n* is even</u>
 - $\lim_{x \to \infty} x^n = \infty \text{ and } \lim_{x \to -\infty} x^n = -\infty \text{ when } \underline{n \text{ is odd}}$
 - $\sum_{x \to \pm \infty}^{n} p(x) = \lim_{x \to \pm} a \cdot x^n = \pm \infty \text{ depending on the degree of } x^n \text{ (even or odd) and the sign of } a$

$$\sum_{x \to \pm \infty} \lim_{x \to \pm \infty} x^{-n} = \lim_{x \to \pm \infty} \frac{1}{x^n} = 0$$

• Rational Functions where numerator and denominator are *polynomials*

- \circ identify the highest power of x in the denominator
- \circ divide *every* term in the function by that highest power from the denominator
- \circ simplify each term
- take the limit of each term (recall: $\lim_{x \to \pm \infty} \frac{1}{x^n} = 0$)
- $\circ\,$ If the degree of the top polynomial is less than the degree of the bottom polynomial, y=0 is a horizontal asymptote
- If the degrees are the same, the horizontal asymptote is the fraction of the leading coefficients
- If the degree of the top polynomial is greater than the degree of the bottom polynomial, there are no horizontal asymptotes
- If the degree of the top polynomial is exactly one more than the degree of the bottom polynomial, there are no horizontal asymptotes, but there is a slant asymptote
 - \Box Find the equation of a slant asymptote by long polynomial division

• Rational Functions where numerator and denominator may *not* be polynomials

- \circ identify the highest power of x in the denominator
 - \Box Is the power even or odd when pulled outside of the radical?
 - \Box If even outside of the radical, that power of x will always be positive.
 - \Box If odd out outside of the radical, that power of x depends on if $x \to -\infty$ or $x \to \infty$.
- \circ divide *every* term in the function by that highest power from the denominator
 - \Box Underneath any radicals, make sure you are dividing each term by the power of x that is appropriate for within the radical as it is outside the radical
 - \Box Outside the radical, divide by the appropriate sign and power on x
- \circ <u>simplify</u> each term
- take the limit of each term (recall: $\lim_{x \to 0} \frac{1}{x^n} = 0$)

$$\lim_{x \to \pm \infty} \frac{1}{x^n} = 0$$

JIT 6.1, 6.2: Exponential Functions

- $f(x) = b^x$
- If b > 1, our function is growing really fast.
- If 0 < b < 1, our function is decaying really fast
- All exponential functions (without a shift) will pass through (0, 1) since any number raised to the zero power (except 0) is 1.
- Translations and Reflections
 - Let c be a positive number...
 - \circ Horizontal Shift: b^{x-c} right shift; b^{x+c} left shift
 - \circ Vertical Shift: $b^x + c$ upward shift; $b^x c$ downward shift
 - Reflect over *x*-axis: $-b^x$
 - Reflect over y-axis: b^{-x}
- Solving Equation with Exponential Functions
- \circ If the bases are the same, you can set the exponents equal to each other and solve
- The Natural Exponential Function
 - $\circ \ f(x) = e^x$
 - $\circ e = 2.71828...$
 - \circ goes through (0,1)
 - \circ slope of tangent line is 1 at x=0

JIT 7.1: Composition of Functions

- Rather than a variable input, x, a function can take in another function as its input
- $(f \circ g)(x) = f(g(x))$ means to plug in g(x) everywhere you see an x in your function f(x).
- If $f(x) = x^2 + 2$ and g(x) = x 3, $f(g(x)) = (x 3)^2 + 2$

JIT 7.2, 7.3, 7.4: Inverse Functions

- If f(g(x)) = x and g(f(x)) = x, then f(x) and g(x) are inverses.
- We can denote the inverse of f(x) as $f^{-1}(x)$
- The domain of f(x) is the range of $f^{-1}(x)$
- The range of f(x) is the domain of $f^{-1}(x)$
- Graphically
 - **Horizontal Line Test**: A function passes the HLT if you drag a horizontal line down your function and it only crosses your function at one point
 - A function is **one-to-one** if it passes the HLT
 - $\circ\,$ If a function is one-to-one, it has an inverse
 - The inverse of a function is the function reflected over the line y = x
 - If the point (a, b) lies on f(x), the point (b, a) lies on $f^{-1}(x)$.

• Algebraically

- \circ <u>Solve</u> the function for x
- \circ Swap x and y
- \circ Replace y with inverse notation

JIT 8.1, 8.2, 8.3, 8.4: Logarithmic Functions

- $f(x) = \log_{h}(x)$
- logarithmic functions and exponential functions are inverses: $\log_b(x)$ is the inverse of b^x $\circ \ b^{\log_b(x)} = x$
 - $\circ \log_b(b^x) = x$
- To evaluate what $\log_b(\text{number})$ is, ask yourself, "What power to I need to raise by base b to to get this number on the inside?"
 - ex: $\log_9(81) = 2$ because $9^2 = 81$.
- Laws of Logs
 - $\circ \log_b(xy) = \log_b(x) + \log_b(y)$
 - $\circ \log_b\left(\frac{x}{y}\right) = \log_b(x) \log_b(y)$ $\circ \log_b(x^r) = r \log_b(x)$
- When solving an equation involving logs, make sure you check that your solution is valid!
- The Natural Log Function
 - $\circ f(x) = \ln(x)$
 - \circ log base *e*
 - \circ inverse of e^x
 - $\Box \ e^{\ln(x)} = x$

$$\Box \ln(e^x) = x$$

 $\circ \ln(1) = 0$, passes through (1, 0)

• Change of Base

- If you want to change from base <u>b</u> to base <u>e</u>: $b^x = e^{x \ln(b)}$ and $\log_b(x) = \frac{\ln(x)}{\ln(b)}$
- If you want to change from base <u>b</u> to base c: $b^x = c^{x \log_c(b)}$ and $\log_b(x) = \frac{\log_c(x)}{\log_c(b)}$

Ch 2.6: Continuity

- For a function to be continuous at x = a, we need
 - $\circ f(a)$ defined
 - $\circ \lim f(x)$ exists
 - $\circ \ \stackrel{x \to a}{f(a)} = \lim_{x \to a} f(x)$
- We have 4 types of discontinuities:
 - removable
 - * violates $f(a) = \lim_{x \to a} f(x)$
 - * You'll have a removable discontinuity when you <u>cancel out a factor</u> from the numerator and denominator
 - * You can fix a removable discontinuity by "filling in the hole" and making $f(a) = \lim_{x \to a} f(x)$
 - o jump

* violates
$$\lim_{x \to a} f(x)$$
 exists (b/c $\lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x)$)

- \circ infinite
 - * violates f(a) defined and sometimes $\lim f(x)$ exists
- <u>oscillating</u> * violates f(a) defined and $\lim f(x)$ exists

Ch 2.6: Intermediate Value Theorem

- If f is continuous on [a, b] and $\underline{f(a)} < L < f(b)$, then there is a number c within (a, b) such that $\underline{f(c)} = \underline{L}$
- "Has there ever been a time when you were *exactly* three feet?"
 - Yes because growth is **continuous** and there was a time when you were **less than** three feet (f(a) < L) and a time when you were **greater than** three free (L < f(b)). So, there must have been an instant (c) when you were exactly three feet (f(c) = L).
- A lot of times we use IVT to determine if something has a <u>root/solution/crosses the x-axis</u>. – check function is continuous
 - check there is a point, a, such that f(a) < 0
 - check there is a point, b, such that 0 < f(b).
 - conclude that there must be a point, c, where f(c) = 0

JIT 11.1: Slopes of Secant Lines

• secant line: goes through two points on a curve

$\frac{f(x)-f(a)}{x-a} \qquad \text{Or} \qquad \frac{f(a+h)-f(a)}{h}$

- Techniques to simplify:
 - expansion
 - common denominator
 - conjugate
 - canceling factors

Ch 3.1: Derivatives at a Point

- <u>derivative at a =slope of tangent line at a =instantaneous change at a</u>
- If we take the limit of the slope of a secant line (push the two points together), we get the slope of a tangent line

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 or $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

• These definitions are *interchangeable* and will give you the same numerical answer for the slope of a tangent line *at a point*.

Ch 3.2: The Limit Definition of a Derivative

• derivative (as a function) = slope of tangent line *anywhere* on the curve

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- Derivative Notation: y', f'(x), f', $\frac{dy}{dx}$, $\frac{d}{dx}(f(x))$
- If we graph the derivative function, we are simply graphing the *slopes of the tangent lines* to our orginal function

function graph	derivative graph
increasing	positive (above x -axis)
decreasing	negative (below x -axis)
smooth min/max	zero (cross x -axis)
constant	zero (over an interval)
linear	constant
quadratic	linear

- A function will <u>not be differentiable</u> at a point (can't find derivative) if it has the following at that point:
 - \circ discontinuity
 - \circ sharp point (corner or cusp) \bigvee \sim
 - \circ vertical tangent (supa steeeeep)
- If a function is differentiable at a, then it is continuous at a.

EQUATION OF A TANGENT LINE

- We need three things to find the equation of a line:
 - \circ slope (m)
 - \circ x-point (x_1)
 - \circ y-point (y_1)
- If we are finding the equation of a tangent line, the <u>slope of the tangent line</u> will be the <u>derivative</u>.
- To find the slope of the tangent line at our x_1 value, we plug in x_1 into the derivative.

•
$$m_{tan}\Big|_{m} = f'(x_1)$$

- To find the <u>y₁ value</u>, we <u>plug in our x₁ value into the original function</u>
 y₁ = f(x₁)
- To find the slope of a normal line, first find the slope of the tangent line, then flip and negate it.
 m_{norm} = -¹/<sub>m_{tan}
 </sub>

- $\frac{d}{dx}(c) = 0$ $\frac{d}{dx}(x) = 1$ $\frac{d}{dx}(x^n) = nx^{n-1}$

$$\frac{d}{dx}(cf(x)) = cf'(x)$$

•
$$\frac{\overline{d}}{dx}(f(x) + g(x)) = f'(x) + g'(x)$$

- $\frac{d}{dx}(e^x) = e^x$
- We can rewrite how functions look so we can use power rule:

•
$$\frac{1}{x^n} = x^{-n}$$

• $\sqrt[m]{x^n} = x^{n/m}$

- a function has a *horizontal tangent line* when f'(x) = 0 because the slope of a horizontal tangent line is zero
- We can find higher order derivatives by taking the derivative of the previous derivative.
 - second derivative: y''
 - third derivative: y'''
 - fourth derivative: $y^{(4)}$
 - $-n^{th}$ derivative: $y^{(n)}$

Ch 3.4: Product Rule and Quotient Rule

 $\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$$

• Sometimes it's easier to simplify your function first before trying these rules.

Ch 3.5: Derivatives of Trig Functions and Special Limits

$\frac{d}{dx}(\sin x) = \cos x$	$\frac{d}{dx}(\cos x) = -\sin x$
$\frac{d}{dx}(\tan x) = \sec^2 x$	$\frac{d}{dx}(\cot x) = -\csc^2 x$
$\frac{d}{dx}(\sec x) = \sec x \tan x$	$\frac{d}{dx}(\csc x) = -\csc x \cot x$

- Derivatives of $\sin x$ and $\cos x$ work in a cycle
 - If you want to find the n^{th} derivative of something in this cycle, divide n by 4, find your remainder, then count your remainder away from your original function

• Special limits: you need to make your <u>coefficient</u> and your coefficient within your <u>angle</u> match.

$\lim_{x \to 0} \frac{\sin x}{x} = 1$	and	$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$
---------------------------------------	-----	---

Ch 3.6: Applications of Derivatives

- Physics • position: s(t) ft • velocity: v(t) = s'(t) ft/s • acceleration: a(t) = v'(t) = s''(t) ft/s²
 - \circ speed = |v(t)| ft/s
 - To find an object's maximum height:
 - 1. First find when the object reaches its max height by solving where v(t) = 0.
 - 2. Then, find the max height by plugging the time you found in Step 1 into your position function, s(t).
 - To find the velocity in which an object strikes the ground:
 - 1. First find when an object strikes the ground by solving where s(t) = 0.
 - 2. Then, find the velocity it strikes the ground by plugging the time you found in Step 1 into your velocity function, v(t).
 - Velocity's sign signifies direction. An object possibly changes direction when v(t) = 0
 - * If v(t) < 0, the object is moving down or to the left
 - * If v(t) > 0, the object is moving up or to the right

• Economics

- Cost Function: C(x) how much to produce the first x items
- Average Cost: $C(x) = \frac{C(x)}{x}$ the average cost to produce x items Marginal Cost: C'(x) about how much it will make to produce one more item after making x items

JIT 12.1: Decomposition of Functions

- In a composition of functions, we have an outer and an inner function: f(q(x))
 - \circ outer: f(x)
 - \circ inner: q(x)
- We can also have a composition of three functions: f(q(h(x)))
 - \circ outer: f(x)
 - \circ inner: q(x)
 - most inner: h(x)

Ch 3.7: Chain Rule

- Chain Rule tells us how to take the derivative of a composition of functions $\circ \ \frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$
- Version 1
 - 1. First, identify your outer and inner functions.
 - 2. Call your inner function u and let your outer function be a function of u.
 - \circ outer: y = f(u)
 - \circ inner: u = q(x)

 - 3. Take the derivative of your outer and inner functions

 outer derivative: dy/du = f'(u)
 inner derivative: du/dx = g'(x)

 4. Multiply the derivatives together

 dy/dx = dy/du · du/dx = f'(u) · g'(x)

 5. Replace any us with u = g(x) so that your final answer is only in terms of x. $\circ \ \frac{dy}{dx} = f'(g(x)) \cdot g'(x)$
- Version 2
 - 1. First, identify your outer and inner functions.
 - 2. Take the derivative of your first, leaving your inside function *unchanged*. $\circ f'(q(x))$
 - 3. Multiply by the derivative of the inside function $\circ f'(q(x)) \cdot q'(x)$
- You can use Chain Rule as many times as needed to ensure you take the derivative of your entire composition of functions.